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The paper presents the main results on hypercomputing based on the use of relativistic
effects. Two approaches to the problem are compared — formal-logical and physical. The
basis of the physical approach is the study of the metric of curved space-time manifolds on
which hypercomputing are realized, obtained either by applying the equivalence principle
or by solving Einstein's equations. The properties of Malament-Hogarth spaces arising in
these manifolds are discussed. The advantages of the physical approach are shown, which
make it possible to verify the possibility of hypercomputing by the example of the problem
of calculating the sum of the divergent Dirichlet series for the Riemann zeta function, which
requires overcoming the so-called Turing barrier. It is stressed the possibility of using
numerical algebras that differ from the field of real numbers, which promises significant
progress in the development of modern physical theories first of all in cosmology.

The issues of relativistic theory are considered separately. The relativistic solution of the
problem of motion with constant acceleration by finding the gravitational potential field of
an infinite homogeneous plane is discussed. The solution of this problem by applying the
equivalence principle is also discussed. The results are compared with the well-known

solutions of V. Fock and R. Tolman.

1.Introduction

The last quarter of the 20th and the beginning of the 21st century
were marked by the appearance of a large number of works devoted
to computational models, called hypercomputing, within which the
task of overcoming the so-called Turing barrier, which posits the limit
of computability for classical devices modeled by a Turing machine.
The concept of computability arose in connection with the discovery
by A. Turing of non-computable problems, i.e. problems that cannot
be solved on a Turing machine in a finite number of steps of the
computing algorithm [1].

The interest in hypercomputing is due to various reasons: from purely
practical ones related to the expansion of computing devices'
possibilities to purely theoretical ones, for example, the violation of
the Church-Turing thesis [2].

Of particular note are the works devoted to the use of the effects of
general relativity for the implementation of hypercomputing (at least
theoretically). The achievements of this direction include finding a
class of relativistic manifolds that allow hypercomputing — the so-
called Malament-Hogarth spaces [3].

One of the variants for implementing relativistic hypercomputing is
the proposal to use space-time near a Kerr-Newman black hole,
proposed by Nemeti et al [4], and using the effect of relativistic time
dilation in its vicinity. According to this, two participants can
implement hypercomputing according to the following scheme.
Participant P (programmer) travels from point O in the outer region of
the black hole to its inner horizon in finite time by its clock.
Participant C (computer), staying at point O, performs calculations and
constantly keeps in touch with P for an infinite time by his watch.

! There is one weak point in the above reasoning. The important thing is not the effect of
relativistic time dilation by itself, but the increase in the number of steps of the algorithm for
finding a solution over a certain period of time. The latter is not obvious, because along with

During this time, he can perform an infinite number of steps of a
computational algorithm and solve a problem that is not computable
in the sense of Turing, for example, prove the consistency of the
axiomatic of set theory ZFC [4] and send P a message about it, which
he will receive at a finite (according to his watch) time. However,
according to the authors, the practical

implementation of this hypothetical scenario is
indefinitely due to the difficulties of implementation®.

postponed

In this paper, another variant of relativistic hypercomputing is
considered by the example of calculating the sums of divergent series.
It is known that divergent series do not have a sum in the usual sense
applicable to convergent series, and special summation methods are
used to find it [5]. The reason for the divergence of the series is the
failure of the necessary convergence condition - the non-decreasing
or growth of the n-th term of the series an (if we talk about sign-
constant series an > 0) with the growth of its serial number n. However,
it is possible to eliminate the cause of the divergence using a
computational scheme that in general resembles the one above (and
formally coincides with the scheme described by Nemeti et al [6],
where the role of the source of relativistic effects is played not by a
black hole, but by anti-de Sitter space-time). Programmer P, being at
rest, observes calculations on computer C, which moves rectilinearly
and accelerated relative to it (if we are talking about a series of natural
or real numbers). From the point of view of P, all a, look like a(Z-
vn?/c?*, here c - is a speed of light, and v — the velocity of C at the
moment of adding the n-th term to the next partial sum of the series.
The convergence of the series can be ensured by decreasing the
relativistic factor?

the relativistic time stretching on the C side, the time spent on one step of the algorithm
increases in the same proportion.

2 Note that this scheme does not use the effect of relativistic time dilation. This scheme
requires improvement and is given here for illustrative purposes in the spirit of [4, 6]. Below,
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2. Calculation of series’ sums of the Riemann zeta function

Consider the Dirichlet series for the Riemann zeta function {(2
o0
_z .
((z)=Zn ,Z=U+1v @
n=1

u,v— are real numbers. The series (1) converges for u > 1. In the article
[7], relativistic effects were used to calculate {(-1). In this case, partial
sums of the series (1)

(@)= @

(z = -1) are coincident with the distance Sm, which is traveled at the
time moment m by the material point (computer C) moving with
constant acceleration along a straight line. The problem is reduced to
determining the distance S~traveled by a point in a gravitational field
created by an infinite plane with a constant density of mass o located
perpendicular to a straight line of motion and providing constant
acceleration in the computer's rest system. In [7], by solving the
Einstein equation [8], an expression for a metric of a straight line
along which C moves was found?
-1

X

ds’ =|1+—|c’dt’ —|1+—| dx’ €

X, X,
s — is an interval, ¢ - time, x - coordinate along a straight line, x. =
/4no K, K- gravitational constant [7). The computer C moves starting
from some point on the straight line x = x;, having a speed which is
determined by the initial condition and stops in the point x = -x,
where the metric (3) has a singularity* The calculations made in [7]
give the value S.= -0.08035 which matches the exact value {(-1) = -
0.08333... with relative error 4 = 0.03576. The reason for the error is
due to that metric (3) corresponds to a constant acceleration in the rest
system of computer C, and not programmer P. Additional results and
estimations can be found in the works [9, 10, 11].

The implementation of these methods for series (1) for complex zis of
particular interest since it allows us to raise the question of using
hypercomputing to prove the Riemann hypothesis. Articles [12, 13, 14]
are devoted to this task. In [12] it is shown that partial sums Sx (2) in
the plane of complex z for m >>1 describe the vortex trajectory. This
makes it possible to avoid solving Einstein's equations to find the
metric in the vortex rest system, i.e. computer C, and instead use the
equivalence principle (PE). Assuming the metric in the programmer's
rest system P as Euclidean one and performing the transition to the
computer rest system, we find the metric of the latter [12]

= A(r)(cdt)’ —dI* + B(r)dr*
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r, ¢ — are polar coordinates, dP = drr + rPdp? ¢ and @ - vortex
parameters, which define radial and tangent velocities of vortex
versus its radius r.

The study of solutions of relativistic equations of motion of computer
C shows that depending on the argument z of the zeta function {(2)
there are two types of computer trajectories. The trajectories of the
first corresponding to the nontrivial zeros {(2) end at the point r= 0.
The second type includes all other trajectories. Trajectories of the first

relativistic effects are used to calculate specific series, which allows for more rigorous
reasoning based on the solution of Einstein equations and relativistic equations of motion.

3 For the expression for metric (3), see Appendix A

* Or in the opposite direction due to the invariance of the equations concerning the reversal
of time.

type occur only if the argument of the zeta function locates on the
critical line, ie. if R2) = u = %2 . As shown in [13], there are no
trajectories of the first type outside the critical line, which proves the
Riemann hypothesis.

In [14], it is stated that the proof of the Riemann hypothesis is
associated with overcoming the Turing barrier.

3. Discussion

Most of the published materials on the topic of relativistic
hypercomputing are anyway related to Einstein's PE, according to
which "a non-inertial frame of reference is equivalent to some
gravitational field” [8]. The significance of PE in A. Einstein's way of
development of the theory of gravitation is well known and described
in detail in the scientific literature (see, for example, [15]).

For our purposes, is of interest the role of PE in the post-relativistic
era.

According to V.A. Fock [16], PE is true only locally and in this sense is
inferior to the global principle of equality of inert and heavy mass. To
illustrate this, V.A. Fock considers the transformation of the interval
ds? = dt? -~ dx? under a nonlinear transformation of the coordinates
of an inertial reference frame (x, ) to some other system (Mgller
coordinates [17])

ds* = c*dt"? -
= xch=- g (

c g
-G g’ f h

(5)

g

g - is a constant having the dimension of acceleration. On condition
gt/c<<1V.A. Fock presents transformations (5) in the form describing
the transition to an equiaccelerated reference frame >

2

t
' g—;t’:t ®)

After conversion, the interval ds takes the form

2

X

ds* = c+g— dt® —dx? ©
c

Further, V.A. Fock gives an approximate expression for the interval
corresponding to the true gravitational field (i.e. obtained by solving
Einstein's equations) with a Newtonian potential U = -gx under the
condition |gx|<<c?

ds* = (c2 —2U)dt2 - 1+£ dx? ®
c

Comparing (7) and (8), he concludes that the fields of acceleration and
gravity are not fully equivalent.

R. Tolman builds his arguments in another way 8. It proceeds from
formulas (6) by converting the Galilean interval of the resting observer
ds® = c2de — dx? to the form

ds® = (02 ? 'z)dz"2 dx'’ +2gt'dx'dt’

with which the second observer is working, moving relative to the
first with acceleration g. Accordingly, solving the same covariant
equations of motion for test particles, the first observer will get

s Strictly speaking, it follows from (5) ¢ = #(Z+xg/c?). To use (6), an additional condition must be
imposed, x<<ct, i.e. Fock's reasoning is valid away from the boundary of the light cone
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2 2
d°x d-°t
2 T 52
ds ds
whereas for the second Tolman gets ©
2 2
d~x' g dt
2 T2 2,22 3.2
ds c’—g't ds
the difference in which he (the observer) can attribute to the
gravitational field, and not some absolute property of his movement,
which is confirmed by PE. Despite some differences in conclusions,

both authors, claim the same thing, since their research is based on
the same equations.

0 (10)

0 1)

In any case, the use of PE to justify relativistic hypercomputing is
limited by the conditions mentioned above, which can be avoided by
resorting to solving Einstein's equations.

Nonetheless, to obtain the metric (4) in [12], it is PE that is used, which,
as shown above, does not allow, due to its incomplete equivalence to
the equations of gravity, to hope for the accuracy of the result, which
was noted in [13]. But in [13], as was indicated, there was no aim to
perform any calculations, for example, the values of the roots of the
Riemann zeta function {(2). Its purpose was to study the possible
trajectories of a computer for different values of the argument ((2), i.e.
we did not go beyond the kinematics limiting the applicability of PE.

‘We note one circumstance that was not previously paid attention to.
‘When using PE, the real source of the curvature of space-time (gravity)
is not indicated - its role is played by the acceleration of computer C.
For this reason, the resulting expressions for metric (4) do not include
the gravitational constant, unlike (3) where it determines the value of
X. This once again underlines the limitations of PE - the curvature of
space-time caused by acceleration does not correspond to any
gravitational field. This is evidenced by turning the corresponding
Riemann tensor to zero [18].

Inevitably, works on hypercomputation affect the main provisions of
relativistic theory. In order not to enumerate them as the authors of
the mentioned works do (see, for example, [19]), we will mention only
the question of the singular structure of relativistic manifolds
admitting hypercomputing. However, if in [19, 20, 21] it is speaking
about manifolds identified with the Universe, then in the author's
works we are talking about specific numerical manifolds (real [7, 9, 10,
11] and complex [12, 13, 14]) used in hypercomputing. Only their
singular structure is common, although the nature of the singularity
depends on the specific calculation.

The latter circumstance allows us to take a different look at the very
possibility of hypercomputing. Firstly, it is not tied to the results of
modern cosmology, which, like all objective data, can change under
the influence of new facts. Secondly, it does not require huge
expenditures of resources available only to future generations and
allows you to use hypercomputing yet today’.

To fit these new results into the framework of the traditional
paradigm of relativistic hypercomputing, it is necessary to make sure
that the structure of the manifolds used has the character of
Malament-Hogarth spaces. Let's remind their definition: “A
relativistic spacetime is called Malament-Hogarth (MH) if there is an
event (called MH-event) in it which contains in its causal past a
worldline of infinite proper length” 24, But this follows from the very
formulation of the problem of calculating the sum of an infinite
divergent series as a problem of relativistic mechanics of the motion
of a point, where the role of time is played by the m - number of terms
of the partial sum of the series (2). In addition, as is known, no-MX
spaces are globally hyperbolic [22] This is consistent with the fact that
a real number line with metric (3) cannot be completely embedded in
a globally hyperbolic plane [10].

6 Regarding the accuracy of formulas (11) borrowed from [18], see Appendix B.

7 For this reason, those ingenious scenarios of using Kerr-Newman black holes to test the
consistency of the axiomatic of ZFC set theory lose their relevance. Humanity will have
enough time to find less costly ways to test it.

Let's start discussing the prospects of hypercomputing with a link to
the work [21]: “Two major new paradigms of computing arising from
new physics are quantum computing and general relativistic
computing. Quantum computing challenges complexity barriers in
computability, while general relativistic computing challenges the
physical Church-Turing Thesis itself...

The PhCT is the conjecture that whatever physical computing device
(in the broader sense) or physical thought-experiment will be
designed by any future civilization, it will always be simulatable by a
Turing machine.”

Many questions concerning the prospects of hypercomputing are
formulated in the pioneer works cited above. Most of them are related
to the implementation of hypercomputing devices using black holes
and, being technical, are not of interest in the context of this work.
Other issues relate to the relationship of PhCT violation and the
structure of MH spaces and are of a fundamental nature. Their
solution, regardless of the implementation, is related to the nature of
the singularities of the corresponding manifolds, cosmological or
numerical.

Another feature of the mentioned works is the emphasis not on the
mathematical side of the theory, but on its logical structure, to
formalize it, bringing it in the form of a set of statements expressed
using first-order logic. As a sample, the authors refer to the example
of the axiomatization of geometry by Euclid, Hilbert, and Tarski. Here
we could add D. Hilbert's axiomatic approach to the main problems of
physics (Hilbert's 6th problem), which led him to the successful
conclusion of relativistic equations of gravity simultaneously with A.
Einstein [23].

It should be said about the difference in the approaches of D. Hilbert
and of Nemeti et al [19, 20, 21, 24]. Hilbert did not set the
axiomatization of a particular field of physics as his ultimate goal and
obtained the final result by physical methods or, if you like, by
methods of computational mathematics, whereas the aforementioned
authors seek to give the results of relativistic theory the character of
theorems proving by methods of logic.

Perhaps the increased interest in the logical foundations of the theory
was stimulated by the historical fact that in the subsequent analysis
of the hypotheses underlying the special theory of relativity (the
principle of relativity extended to electromagnetic phenomena and
the principle of the constancy of the speed of light) their dependence
became clear.

Although according to the authors of the mentioned works, their goal
is to clarify the logical connection between the statements underlying
the general theory of relativity, it seems that they are aiming at
something more, namely, complete axiomatic construction of the
theory. Judging by the results, the authors have not yet managed to
achieve the final goal. Moreover, it is possible to express a certain
doubt about its reality®.

On this occasion, it is worth making one more remark. The relativistic
theory is constantly evolving, which must be considered when trying
to axiomatize it. It is difficult to expect new results, such as the
finding of non-wave solutions of the Maxwell-Einstein equations [25]
and the instability of the electromagnetic vacuum under the horizon
of a black hole [26] ° can be obtained as consequences of the axioms
laid down in the basis of the theory in the works [19, 20, 21, 24].

Of particular interest is the question of the relationship between the
properties of space-time and the properties of numbers describing it
[27]. The existence of such a connection has been suspected for a long
time. F. Klein wrote about the justification of Euclidean geometry in
his Lectures [28]: "Riemann notes that all previous studies are based

® Indeed, if this were possible for the general theory of relativity, then why not set the same
goal for the simpler theory of Newton's gravitation, for example, to try logically deduce
Newton's law of gravitation from the Kepler's laws, taken as axioms.

° The fact that in [24] we are talking about a Schwarzschild black hole, and not a Kerr one,
does not remove the question.
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on the assumption that straight lines have infinite length..”*°. E.
Rosiner [29] indicates the possibility of using numerical algebras that
differ from the field of real numbers, which promises significant
progress in the development of modern physical theories:

“+ Obtaining an easy to construct and use large setup within which
we can consider the further extension and deepening of the Principle
of Relativity, and do so this time not only with respect to reference
frame transformations or the usual background independence of the
type encountered in General Relativity, but also within the
significantly more general concept of background independence with
respect to the mathematical models which give the scalars used in the
theories of Physics.

» Doing away with the long ongoing and difficult issue of” infinities in
physics”, a thus as well with the need for the rather ill-founded variety

of methods called” renormalization”.

The latter is confirmed by solving the problem with infinities in
quantum field theory by using a non-Archimedean algebra of real
numbers equipped with a metric (3) [30].

Specific results are presented in the papers [10, 11, 29]. In [29], the
algebraic structures of numbers generated by the theory of space-
time are investigated, and the formal-logical approach described
above is used. It is shown that the structure of numerical algebras
strongly depends on the set of axioms of space-time theories. In [10,
11], static and dynamic non-Euclidean (non-Archimedean) numeric
systems are investigated®’. An example of a static system is given in
which equality {{(-1) = -1/12 is performed. An example of a dynamical
system whose properties change over time is also given, which allows
an alternative interpretation of the observed "expansion of the
Universe”.

Thus, the analysis of the number structures used within the
framework of a logical and physical approach based on the application
of methods of general relativity leads to the same conclusions,
although the latter is richer in results.

4, Conclusion

According to the current trend in the development of mathematics,
physics is considered as a source of new ideas that require strict
justification and development (E. Witten). An example of this is the
field of relativistic hypercomputing, to which this article is devoted.
Within the framework of the traditional direction, the main attention
is paid to the consideration of the works of I. Nemeti, H. Andreka and
others. In addition to their proposed model of hypercomputing based
on the effect of time dilation in the vicinity of a black hole, their
attempts to formulate the main provisions of relativistic theory (both
special and general) in the form of first-order logic with the allocation
of basic axioms and the subsequent application of purely logical
procedures to them are also discussed. This direction can be
conditionally called formal-logical. The disadvantages of this
approach in the study of hypercomputing are noted. In this regard, it
is appropriate to mention F. Klein's statements about the correlation
of formal-logical and intuitive-contemplative principles in the study
of arithmetic, which preceded the modern works on the
axiomatization of relativistic theory mentioned above [28].

Another direction, which can be conditionally called as physical one,
is represented by the works of the author. The basis of the physical
approach is the study of the metric of curved spacetime manifolds on
which hypercomputing is realized, obtained either by applying the
equivalence principle or by solving Einstein's equations. The
properties of Malament-Hogarth spaces arising in these manifolds are
discussed. The advantages of the physical approach are shown, which
make it possible to verify the possibility of hypercomputing by the

10 Although that these words referred to geometry, they can also be applied to the numerical
continuum.

" The difference in terminology is insignificant if the numerical continuum is geometrized
since the violation of the 2nd Euclidean principle is equivalent to the violation of the
Archimedean property of a numerical system.

example of the problem of calculating the sum of the divergent
Dirichlet series for the Riemann zeta function, which requires
overcoming the so-called Turing barrier.
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Appendix A

While writing the article, there was a small discussion about the
solution of the relativistic problem of an infinite homogeneous plane,
which can be found on the Quora portal [31, 32, 33]. According to the
opponent (Viktor H. Toth), the author's solution of this problem is
incorrect. The essence of the objections is the same as A. Einstein's
objections[34] to L. Silberstein's solution[35] of the two-body problem
in general relativity concerning the non-analyticity of the metric
obtained in [35]. The correct approach to the study of the problem of
an infinite homogeneous plane in GR, according to the opponent, is
set out in the work [36]*2.

In fact, A. Einstein's objections boiled down to the fact that the
appearance of "extra" singularities in the metric obtained by solving
the field equations should have a physical justification, for example,
correspond to an extra particle, thereby contradicting the original
formulation of the two-body problem. It must be said that the opinion
of A. Einstein himself about the representation of particles by the
singularities of the field changed throughout his activity [37].
Regarding metric (3), it should be said that the singularity in it has a
completely different origin and does not correspond to any particle
and does not contradict the original formulation of the problem. This
only indicates that the problem of an infinite plane in GR cannot be
correctly considered in the traditional algebra of real numbers, as
already mentioned in the author's works, including this article.

As for the opponent's fair remark that the metric (3) should depend on
| x-x0|, and not on x-xo, the contradiction is easily avoided by placing
the plane at spatial infinity, since the final expression does not
include the coordinate of the plane xo.

Appendix B

We show that in formulas (11), borrowed from [18], an excess of
accuracy is allowed. Indeed, if we proceed from the general
transformations of coordinates (5), then the transition to the streaked
coordinates up to the terms ~(g¢/c)*> would be described by formulas
(far from the boundaries of the light cone)

2.2 2

t t
x'=x 1+g—2 +g—;t'=t ®1)
2c
the meaning of which is not entirely clear. To use formulas (6), in the
decomposition of the right parts of formulas (5), it is necessary to
neglect terms of order (gt/c)? in comparison with 1. But then the first
formula in (11) should not contain in the denominator a second-order
term g?# in ¢t We show that the first-order term in ¢ can be present.
To do this, we use the expression for the interval (9) in which, under
the accepted restrictions, the summand gt % should be omitted in the
first term on the right.

2 1t must be said that the authors of this work do not solve the field equations, but are only
busy best fitting heuristic metrics to them.
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Then the metric tensors gu and g corresponding to the corrected
interval (9) will have the form (7 k=0, 1)

1 &
ik C
gk =8 = (B2)
.
c

By definition g%gim = d’m with the specified accuracy.

Calculating the Christoffel symbols I [8]
i lgim 0Z ik +agml _agkl .
K 1 A 5
2 Ox ox"  ox" ®3)
0 1
x =ct',x =x'
we find non-zero symbols
2
o 8t a1 8
FOO ——3,F00 =— (B4)
C C

Accordingly, the equations of motion of test particles in the
accelerated coordinate system

d*x' ,dxt dx!
s T a0
s s ds
look as follows
d’x’  g’t( dx’
—at | =0
ds c ds
) (B6)
d’x' g dx' _0
ds* ¢\ ds

and easily integrated. In the accepted approximation, expressions
similar to (11), which are given in [18], have the form

dZ 0 dZ 1
djz P ®7)
S

2 T2
ds c” t2gct
The signs + depend on the direction of movement of the test particle.

b
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