
 

Journal of Nature, Science & Technology 1 (2022)6633 

 

 

 

journal home: www.acapublishing.com/journals/6/janset 
 

*Corresponding Author: zyrnick@rambler.ru                                 
Received 10 Feb 2022; Revised 06 April 2022; Accepted 06 April 2022 https://doi.org/10.36937/janset.2022.6633 
2757-7783 /© 2022 The Authors, Published by ACA Publishing; a trademark of ACADEMY Ltd. All rights reserved. 
   

1 

 
 

Review Article 

Relativistic Hypercomputing: Problems and Prospects from the Physicist’s 
Point of View 

       
Yuriy Zayko1  
1Department of Informatics, Russian Presidential Academy of National Economy and Public Administration, Stolypin Volga 
Region Institute, Saratov, 410031, Russia  

Keywords  Abstract 
Hypercomputing,  
Turing barrier,  
Church-Turing thesis,  
Malament-Hogarth spaces, 
Riemann zeta function, 
Equivalence principle. 

 The paper presents the main results on hypercomputing based on the use of relativistic 
effects.  Two approaches to the problem are compared – formal-logical and physical. The 
basis of the physical approach is the study of the metric of curved space-time manifolds on 
which hypercomputing are realized, obtained either by applying the equivalence principle 
or by solving Einstein's equations.  The properties of Malament-Hogarth spaces arising in 
these manifolds are discussed. The advantages of the physical approach are shown, which 
make it possible to verify the possibility of hypercomputing by the example of the problem 
of calculating the sum of the divergent Dirichlet series for the Riemann zeta function, which 
requires overcoming the so-called Turing barrier. It is stressed the possibility of using 
numerical algebras that differ from the field of real numbers, which promises significant 
progress in the development of modern physical theories first of all in cosmology. 
The issues of relativistic theory are considered separately. The relativistic solution of the 
problem of motion with constant acceleration by finding the gravitational potential field of 
an infinite homogeneous plane is discussed. The solution of this problem by applying the 
equivalence principle is also discussed. The results are compared with the well-known 
solutions of V. Fock and R. Tolman. 

   

1.Introduction 

The last quarter of the 20th and the beginning of the 21st century 
were marked by the appearance of a large number of works devoted 
to computational models, called hypercomputing, within which the 
task of overcoming the so-called Turing barrier, which posits the limit 
of computability for classical devices modeled by a Turing machine. 
The concept of computability arose in connection with the discovery 
by A. Turing of non-computable problems, i.e. problems that cannot 
be solved on a Turing machine in a finite number of steps of the 
computing algorithm [1].   

The interest in hypercomputing is due to various reasons: from purely 
practical ones related to the expansion of computing devices' 
possibilities to purely theoretical ones, for example, the violation of 
the Church-Turing thesis [2]. 
 
Of particular note are the works devoted to the use of the effects of 
general relativity for the implementation of hypercomputing (at least 
theoretically). The achievements of this direction include finding a 
class of relativistic manifolds that allow hypercomputing – the so-
called Malament-Hogarth spaces [3]. 
 
One of the variants for implementing relativistic hypercomputing is 
the proposal to use space-time near a Kerr-Newman black hole, 
proposed by Nemeti et al [4], and using the effect of relativistic time 
dilation in its vicinity. According to this, two participants can 
implement hypercomputing according to the following scheme. 
Participant P (programmer) travels from point O in the outer region of 
the black hole to its inner horizon in finite time by its clock. 
Participant C (computer), staying at point O, performs calculations and 
constantly keeps in touch with P for an infinite time by his watch. 

                                                           
1 There is one weak point in the above reasoning. The important thing is not the effect of 
relativistic time dilation by itself, but the increase in the number of steps of the algorithm for 
finding a solution over a certain period of time. The latter is not obvious, because along with 

During this time, he can perform an infinite number of steps of a 
computational algorithm and solve a problem that is not computable 
in the sense of Turing, for example, prove the consistency of the 
axiomatic of set theory ZFC [4] and send P a message about it, which 
he will receive at a finite (according to his watch) time. However, 
according to the authors, the practical  
 
implementation of this hypothetical scenario is postponed 
indefinitely due to the difficulties of implementation1 . 
 
In this paper, another variant of relativistic hypercomputing is 
considered by the example of calculating the sums of divergent series. 
It is known that divergent series do not have a sum in the usual sense 
applicable to convergent series, and special summation methods are 
used to find it [5]. The reason for the divergence of the series is the 
failure of the necessary convergence condition – the non-decreasing 
or growth of the n-th term of the series an (if we talk about sign-
constant series an > 0) with the growth of its serial number n. However, 
it is possible to eliminate the cause of the divergence using a 
computational scheme that in general resembles the one above (and 
formally coincides with the scheme described by Nemeti et al [6], 
where the role of the source of relativistic effects is played not by a 
black hole, but by anti–de Sitter space-time). Programmer P, being at 
rest, observes calculations on computer C, which moves rectilinearly 
and accelerated relative to it (if we are talking about a series of natural 
or real numbers).  From the point of view of P, all an look like an(1- 
vn2/c2)1/2, here с – is a speed of light, and vn – the velocity of C at the 
moment of adding the n-th term to the next partial sum of the series. 
The convergence of the series can be ensured by decreasing the 
relativistic factor2  

the relativistic time stretching on the C side, the time spent on one step of the algorithm 
increases in the same proportion. 

2 Note that this scheme does not use the effect of relativistic time dilation. This scheme 
requires improvement and is given here for illustrative purposes in the spirit of [4, 6]. Below, 
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2. Calculation of series’ sums of the Riemann zeta function  

Consider the Dirichlet series for the Riemann zeta function ζ(z) 
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u,v – are real numbers. The series (1) converges for u > 1. In the article 
[7], relativistic effects were used to calculate ζ(-1). In this case, partial 
sums of the series (1) 
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(z = -1) are coincident with the distance  Sm, which is traveled at the 
time moment   m by the material point (computer C) moving with 
constant acceleration along a straight line. The problem is reduced to 
determining the distance S∞ traveled by a point in a gravitational field 
created by an infinite plane with a constant density of mass σ located 
perpendicular to a straight line of motion and providing constant 
acceleration in the computer's rest system.  In [7], by solving the 
Einstein equation [8], an expression for a metric of a straight line 
along which C moves was found3 
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s – is an interval, t - time, x - coordinate along a straight line, xc = 
c2/4πσK, K– gravitational constant [7]. The computer С moves starting 
from some point on the straight line  x = xs, having a speed which is 
determined by the initial condition and stops in the point  x = -xc, 
where the metric (3) has a singularity4. The calculations made in [7] 
give the value S∞= -0.08035 which matches the exact value ζ(-1) = -
0.08333... with relative error Δ = 0.03576. The reason for the error is 
due to that metric (3) corresponds to a constant acceleration in the rest 
system of computer C, and not programmer P. Additional results and 
estimations can be found in the works [9, 10, 11]. 
 
The implementation of these methods for series (1) for complex z is of 
particular interest since it allows us to raise the question of using 
hypercomputing to prove the Riemann hypothesis. Articles [12, 13, 14] 
are devoted to this task. In [12] it is shown that partial sums Sm (2) in 
the plane of complex z for m >> 1 describe the vortex trajectory. This 
makes it possible to avoid solving Einstein's equations to find the 
metric in the vortex rest system, i.e. computer C, and instead use the 
equivalence principle (PE).  Assuming the metric in the programmer's 
rest system P as Euclidean one and performing the transition to the 
computer rest system, we find the metric of the latter [12] 
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r, φ – are polar coordinates, dl2 = dr2 + r2dφ2, δ and ω – vortex 
parameters, which define radial and tangent velocities of vortex 
versus its radius r. 
 
The study of solutions of relativistic equations of motion of computer 
C shows that depending on the argument z of the zeta function ζ(z) 
there are two types of computer trajectories. The trajectories of the 
first corresponding to the nontrivial zeros ζ(z)  end at the point r = 0. 
The second type includes all other trajectories.  Trajectories of the first 

                                                           
relativistic effects are used to calculate specific series, which allows for more rigorous 
reasoning based on the solution of Einstein equations and relativistic equations of motion.  

3 For the expression for metric (3), see Appendix A 

4 Or in the opposite direction due to the invariance of the equations concerning the reversal 
of time.   

type occur only if the argument of the zeta function locates on the 
critical line, i.e. if Re(z) = u = ½ . As shown in [13], there are no 
trajectories of the first type outside the critical line, which proves the 
Riemann hypothesis. 
 
In [14], it is stated that the proof of the Riemann hypothesis is 
associated with overcoming the Turing barrier. 
   

3. Discussion   

Most of the published materials on the topic of relativistic 
hypercomputing are anyway related to Einstein's PE, according to 
which "a non-inertial frame of reference is equivalent to some 
gravitational field” [8]. The significance of PE in A. Einstein's way of 
development of the theory of gravitation is well known and described 
in detail in the scientific literature (see, for example, [15]).  
For our purposes, is of interest the role of PE in the post-relativistic 
era. 
 
According to V.A. Fock [16], PE is true only locally and in this sense is 
inferior to the global principle of equality of inert and heavy mass. To 
illustrate this, V.A. Fock considers the transformation of the interval 
ds2 = c2dt’2 – dx’2 under a nonlinear transformation of the coordinates 
of an inertial reference frame (x’, t’) to some other system (Møller 
coordinates [17])  
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g – is a constant having the dimension of acceleration. On condition 
gt/c << 1 V.A. Fock presents transformations (5) in the form describing 
the transition to an equiaccelerated reference frame 5: 

ttgtxx =′+=′ ;
2
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After conversion, the interval ds takes the form 

22
2

2 dxdt
c
gxcds −






 +=    (7) 

Further, V.A. Fock gives an approximate expression for the interval 
corresponding to the true gravitational field (i.e. obtained by solving 
Einstein's equations) with a Newtonian potential U = -gx under the 
condition |gx|<<c2 
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Comparing (7) and (8), he concludes that the fields of acceleration and 
gravity are not fully equivalent.   
 
R. Tolman builds his arguments in another way [18]. It proceeds from 
formulas (6) by converting the Galilean interval of the resting observer 
ds2 = c2dt2 – dx2 to the form 

( ) tdxdtgxdtdtgcds ′′′+′−′′−= 2222222
 (9) 

with which the second observer is working, moving relative to the 
first with acceleration g. Accordingly, solving the same covariant 
equations of motion for test particles, the first observer will get 

5 Strictly speaking, it follows from (5) t’ = t(1+xg/c2). To use (6), an additional condition must be 
imposed, x<<ct, i.e. Fock's reasoning is valid away from the boundary of the light cone 
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whereas for the second Tolman gets 6  
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the difference in which he (the observer) can attribute to the 
gravitational field, and not some absolute property of his movement, 
which is confirmed by PE. Despite some differences in conclusions, 
both authors, claim the same thing, since their research is based on 
the same equations.  
 
In any case, the use of PE to justify relativistic hypercomputing is 
limited by the conditions mentioned above, which can be avoided by 
resorting to solving Einstein's equations.  
 
Nonetheless, to obtain the metric (4) in [12], it is PE that is used, which, 
as shown above, does not allow, due to its incomplete equivalence to 
the equations of gravity, to hope for the accuracy of the result, which 
was noted in [13]. But in [13], as was indicated, there was no aim to 
perform any calculations, for example, the values of the roots of the 
Riemann zeta function ζ(z). Its purpose was to study the possible 
trajectories of a computer for different values of the argument ζ(z), i.e. 
we did not go beyond the kinematics limiting the applicability of PE. 
 
We note one circumstance that was not previously paid attention to. 
When using PE, the real source of the curvature of space-time (gravity) 
is not indicated – its role is played by the acceleration of computer C. 
For this reason, the resulting expressions for metric (4) do not include 
the gravitational constant, unlike (3) where it determines the value of 
xc. This once again underlines the limitations of PE - the curvature of 
space-time caused by acceleration does not correspond to any 
gravitational field. This is evidenced by turning the corresponding 
Riemann tensor to zero [18].    
Inevitably, works on hypercomputation affect the main provisions of 
relativistic theory. In order not to enumerate them as the authors of 
the mentioned works do (see, for example, [19]), we will mention only 
the question of the singular structure of relativistic manifolds 
admitting hypercomputing. However, if in [19, 20, 21] it is speaking 
about manifolds identified with the Universe, then in the author's 
works we are talking about specific numerical manifolds (real [7, 9, 10, 
11] and complex [12, 13, 14]) used in hypercomputing. Only their 
singular structure is common, although the nature of the singularity 
depends on the specific calculation. 
 
The latter circumstance allows us to take a different look at the very 
possibility of hypercomputing. Firstly, it is not tied to the results of 
modern cosmology, which, like all objective data, can change under 
the influence of new facts. Secondly, it does not require huge 
expenditures of resources available only to future generations and 
allows you to use hypercomputing yet today7. 
 
To fit these new results into the framework of the traditional 
paradigm of relativistic hypercomputing, it is necessary to make sure 
that the structure of the manifolds used has the character of 
Malament-Hogarth spaces. Let’s remind their definition: “A 
relativistic spacetime is called Malament-Hogarth (MH) if there is an 
event (called MH-event) in it which contains in its causal past a 
worldline of infinite proper length” [21]. But this follows from the very 
formulation of the problem of calculating the sum of an infinite 
divergent series as a problem of relativistic mechanics of the motion 
of a point, where the role of time is played by the m - number of terms 
of the partial sum of the series (2). In addition, as is known, no-MX 
spaces are globally hyperbolic [22]. This is consistent with the fact that 
a real number line with metric (3) cannot be completely embedded in 
a globally hyperbolic plane [10].   
 

                                                           
6 Regarding the accuracy of formulas (11) borrowed from [18], see Appendix B. 

7 For this reason, those ingenious scenarios of using Kerr-Newman black holes to test the 
consistency of the axiomatic of ZFC set theory lose their relevance. Humanity will have 
enough time to find less costly ways to test it. 

Let's start discussing the prospects of hypercomputing with a link to 
the work [21]: “Two major new paradigms of computing arising from 
new physics are quantum computing and general relativistic 
computing. Quantum computing challenges complexity barriers in 
computability, while general relativistic computing challenges the 
physical Church-Turing Thesis itself… 
The PhCT is the conjecture that whatever physical computing device 
(in the broader sense) or physical thought-experiment will be 
designed by any future civilization, it will always be simulatable by a 
Turing machine.” 
 
Many questions concerning the prospects of hypercomputing are 
formulated in the pioneer works cited above. Most of them are related 
to the implementation of hypercomputing devices using black holes 
and, being technical, are not of interest in the context of this work. 
Other issues relate to the relationship of PhCT violation and the 
structure of MH spaces and are of a fundamental nature. Their 
solution, regardless of the implementation, is related to the nature of 
the singularities of the corresponding manifolds, cosmological or 
numerical.  
 
Another feature of the mentioned works is the emphasis not on the 
mathematical side of the theory, but on its logical structure, to 
formalize it, bringing it in the form of a set of statements expressed 
using first-order logic. As a sample, the authors refer to the example 
of the axiomatization of geometry by Euclid, Hilbert, and Tarski. Here 
we could add D. Hilbert's axiomatic approach to the main problems of 
physics (Hilbert's 6th problem), which led him to the successful 
conclusion of relativistic equations of gravity simultaneously with A. 
Einstein [23].  
 
It should be said about the difference in the approaches of D. Hilbert 
and of Nemeti et al [19, 20, 21, 24]. Hilbert did not set the 
axiomatization of a particular field of physics as his ultimate goal and 
obtained the final result by physical methods or, if you like, by 
methods of computational mathematics, whereas the aforementioned 
authors seek to give the results of relativistic theory the character of 
theorems proving by methods of logic.  
 
Perhaps the increased interest in the logical foundations of the theory 
was stimulated by the historical fact that in the subsequent analysis 
of the hypotheses underlying the special theory of relativity (the 
principle of relativity extended to electromagnetic phenomena and 
the principle of the constancy of the speed of light) their dependence 
became clear.  
 
Although according to the authors of the mentioned works, their goal 
is to clarify the logical connection between the statements underlying 
the general theory of relativity, it seems that they are aiming at 
something more, namely, complete axiomatic construction of the 
theory. Judging by the results, the authors have not yet managed to 
achieve the final goal. Moreover, it is possible to express a certain 
doubt about its reality8.   
 
On this occasion, it is worth making one more remark. The relativistic 
theory is constantly evolving, which must be considered when trying 
to axiomatize it. It is difficult to expect new results, such as the 
finding of non-wave solutions of the Maxwell-Einstein equations [25] 
and the instability of the electromagnetic vacuum under the horizon 
of a black hole [26] 9  can be obtained as consequences of the axioms 
laid down in the basis of the theory in the works [19, 20, 21, 24]. 
 
Of particular interest is the question of the relationship between the 
properties of space-time and the properties of numbers describing it 
[27]. The existence of such a connection has been suspected for a long 
time. F. Klein wrote about the justification of Euclidean geometry in 
his Lectures [28]: "Riemann notes that all previous studies are based 

8 Indeed, if this were possible for the general theory of relativity, then why not set the same 
goal for the simpler theory of Newton's gravitation, for example, to try  logically deduce 
Newton's law of gravitation from the Kepler's laws, taken as axioms.  

9 The fact that in [24] we are talking about a Schwarzschild black hole, and not a Kerr one, 
does not remove the question.  
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on the assumption that straight lines have infinite length…”10. E. 
Rosiner [29] indicates the possibility of using numerical algebras that 
differ from the field of real numbers, which promises significant 
progress in the development of modern physical theories:  
 
“ • Obtaining an easy to construct and use large setup within which 
we can consider the further extension and deepening of the Principle 
of Relativity, and do so this time not only with respect to reference 
frame transformations or the usual background independence of the 
type encountered in General Relativity, but also within the 
significantly more general concept of background independence with 
respect to the mathematical models which give the scalars used in the 
theories of Physics.  
 
• Doing away with the long ongoing and difficult issue of” infinities in 
physics”, a thus as well with the need for the rather ill-founded variety 
of methods called” renormalization”.” 
 
The latter is confirmed by solving the problem with infinities in 
quantum field theory by using a non-Archimedean algebra of real 
numbers equipped with a metric (3) [30]. 
 
Specific results are presented in the papers [10, 11, 29].  In [29], the 
algebraic structures of numbers generated by the theory of space-
time are investigated, and the formal-logical approach described 
above is used. It is shown that the structure of numerical algebras 
strongly depends on the set of axioms of space-time theories. In [10, 
11], static and dynamic non-Euclidean (non-Archimedean) numeric 
systems are investigated11. An example of a static system is given in 
which equality ζ(-1) = -1/12 is performed. An example of a dynamical 
system whose properties change over time is also given, which allows 
an alternative interpretation of the observed "expansion of the 
Universe”.  
 
Thus, the analysis of the number structures used within the 
framework of a logical and physical approach based on the application 
of methods of general relativity leads to the same conclusions, 
although the latter is richer in results.   

 
4. Conclusion 

 

According to the current trend in the development of mathematics, 
physics is considered as a source of new ideas that require strict 
justification and development (E. Witten). An example of this is the 
field of relativistic hypercomputing, to which this article is devoted. 
Within the framework of the traditional direction, the main attention 
is paid to the consideration of the works of I. Nemeti, H. Andreka and 
others. In addition to their proposed model of hypercomputing based 
on the effect of time dilation in the vicinity of a black hole, their 
attempts to formulate the main provisions of relativistic theory (both 
special and general) in the form of first-order logic with the allocation 
of basic axioms and the subsequent application of purely logical 
procedures to them are also discussed. This direction can be 
conditionally called formal-logical. The disadvantages of this 
approach in the study of hypercomputing are noted. In this regard, it 
is appropriate to mention F. Klein's statements about the correlation 
of formal-logical and intuitive-contemplative principles in the study 
of arithmetic, which preceded the modern works on the 
axiomatization of relativistic theory mentioned above [28]. 
 
Another direction, which can be conditionally called as physical one, 
is represented by the works of the author. The basis of the physical 
approach is the study of the metric of curved spacetime manifolds on 
which hypercomputing is realized, obtained either by applying the 
equivalence principle or by solving Einstein's equations.  The 
properties of Malament-Hogarth spaces arising in these manifolds are 
discussed. The advantages of the physical approach are shown, which 
make it possible to verify the possibility of hypercomputing by the 

                                                           
10 Although that these words referred to geometry, they can also be applied to the numerical 
continuum. 

11 The difference in terminology is insignificant if the numerical continuum is geometrized 
since the violation of the 2nd Euclidean principle is equivalent to the violation of the 
Archimedean property of a numerical system. 

example of the problem of calculating the sum of the divergent 
Dirichlet series for the Riemann zeta function, which requires 
overcoming the so-called Turing barrier.  
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Appendix A 

While writing the article, there was a small discussion about the 
solution of the relativistic problem of an infinite homogeneous plane, 
which can be found on the Quora portal [31, 32, 33]. According to the 
opponent (Viktor H. Toth), the author's solution of this problem is 
incorrect. The essence of the objections is the same as A. Einstein's 
objections[34] to L. Silberstein's solution[35] of the two-body problem 
in general relativity concerning the non-analyticity of the metric 
obtained in [35]. The correct approach to the study of the problem of 
an infinite homogeneous plane in GR, according to the opponent, is 
set out in the work [36]12. 
 
In fact, A. Einstein's objections boiled down to the fact that the 
appearance of "extra" singularities in the metric obtained by solving 
the field equations should have a physical justification, for example, 
correspond to an extra particle, thereby contradicting the original 
formulation of the two-body problem. It must be said that the opinion 
of A. Einstein himself about the representation of particles by the 
singularities of the field changed throughout his activity [37]. 
Regarding metric (3), it should be said that the singularity in it has a 
completely different origin and does not correspond to any particle 
and does not contradict the original formulation of the problem. This 
only indicates that the problem of an infinite plane in GR cannot be 
correctly considered in the traditional algebra of real numbers, as 
already mentioned in the author's works, including this article.  
 
As for the opponent's fair remark that the metric (3) should depend on 
|x-x0|, and not on x-x0, the contradiction is easily avoided by placing 
the plane at spatial infinity, since the final expression does not 
include the coordinate of the plane x0. 

 
Appendix B 

We show that in formulas (11), borrowed from [18], an excess of 
accuracy is allowed.  Indeed, if we proceed from the general 
transformations of coordinates (5), then the transition to the  streaked 
coordinates up to the terms ~(gt/c)2 would be described by formulas 
(far from the boundaries of the light cone) 

ttgt
c
tgxx =′+







+=′ ;

22
1

2

2

22

  (B1) 

the meaning of which is not entirely clear. To use formulas (6), in the 
decomposition of the right parts of formulas (5), it is necessary to 
neglect terms of order (gt/c)2 in comparison with 1. But then the first 
formula in (11) should not contain in the denominator a second-order 
term g2t2 in t. We show that the first-order term in t can be present. 
To do this, we use the expression for the interval (9) in which, under 
the accepted restrictions, the summand g2t`2 should be omitted in the 
first term on the right. 
 

12 It must be said that the authors of this work do not solve the field equations, but are only 
busy best fitting heuristic metrics to them. 
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Then the metric tensors gik and gik corresponding to the corrected 
interval (9) will have the form (i, k = 0, 1) 
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By definition gikgkm = δim with the specified accuracy. 

Calculating the Christoffel symbols Γi
kl [8]
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we find non-zero symbols 
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Accordingly, the equations of motion of test particles in the 
accelerated coordinate system  
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look as follows 
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and easily integrated. In the accepted approximation, expressions 
similar to (11), which are given in [18], have the form 
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The signs ± depend on the direction of movement of the test particle. 
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