

Journal of Nature, Science & Technology 1 (2022) 6572

Nature, Science & Technology

journal home: www.acapublishing.com/journals/6/janset

Research Article

Upper-Cretaceous and Paleocene Biostratigraphy of Nkporo Shales, Calabar Flank, Southern Benue Trough

Thomas A. Harry^{*}, ¹, Iniobong Uwemedimoh¹, Monday Udofia², Asuguo Itam³

¹Department of Geology, Akwa Ibom State University

²IDSL- NNPC, Benin- Edo state

³Department of Geology, University of Calabar, Cross River State, Nigeria

Keywords

Foraminiferal, Palynological. Paeocene age. Non-marine.

Abstract

The present study Biostratigraphic (foraminiferal and palynological), paleoenvironment and paleoecological evaluations are aimed at interpreting the lithology, age, paleoenvironmental as well as the paleoecological condition of the deposited sediments newly exposed along Ikot Okpara Otopy, Southeastern Nigeria. Lithological descriptions of the samples reveal that this section is predominantly shale. This shale is dark grey to light brown, fossiliferous with minor occurrence of silts and sandstones. Foraminiferal analysis reveals a Paleocene interval within the Nkporo Formation for the first time. The sediments have low to moderate number of taxa with 96% benthic and 4% planktics, while a total of 196 microflora were recovered and identified. The microfloral species contain 60% of continental plants with 40% of marine counterparts. Key foraminiferal taxa used in this study include Bolivina afra, Bolivina explicata, Globigerina fringe and Haplophragmoides talokaense, while their microfloral counterparts encountered within the section include Cingulatisporites ornatus, Auriculidites reticulates Ephedripites ambonoides, Retidiporites magdalenensis, Synolocolporites marginatus, Constructipollenites ineffectus, Foveotriletes margaritae, Buttinia andreevi, Proxapertites operculatus, Zlivisporis blanensis and Paleocystodinium sp. These assemblages (Foraminiferal and Palynological) depict the deposition of these sediments during the Maastrichtian Paleocene age. The combination of lithologic and biostratigraphic data reveal paleoenvironment interpretation of the study section to range from marginal - shallow to Middle neritic paleo-water depths, while the paleoecological studies depicts a fluctuation in the salinity from brackish to marine settings deposited within a tropical to subtropical warm and humid climate.

Introduction

The origin of the Calabar Flank is intimately associated with the development of the Benue rift system, an event which is related to the opening of the South Atlantic and the existence of an RRR triple junction which was active in the Early Cretaceous times under the Niger delta miogeocline. However, the Calabar Flank represents that part of the foundered southern Nigeria continental Margin dominated by NW-SE Trending step fault system that resulted in the formation and graben structure within the area. development of the flank was controlled by the vertical tectonics of those fault blocks and eustatic sea-level changes within the adjacent south Atlantic Ocean.

The Ikang Trough and the Ituk High which represent the graben and horst structures respectively constitute the major tectonic elements. For most of the depositional history of the area, the Ikang Trough was an intracratonic mobile depression which accumulated mostly shales while the Ituk High, a relatively stable submarine platform received predominantly limestones [1, 2]. According to Nyong and Ramanathan [3], the Calabar Flank contains about 3500m of Cretaceous sediments in outcropping sections [2].

Sediment thickness is over 3500m with the on lap (or featheredge) of the outcropping units, along the fringes of the Oban Massif Basement Complex. The Formations are best exposed along Calabar –Ikom road and a succession consists of five (5) Cretaceous and a Tertiary lithostratigraphic units. Awi Formation is the oldest basal unit and sits non-conformably on the Basement Complex of Oban Massif. The

formation is designated as Aptian in age [4]. This is overlain by Mfamosing Limestone of Middle- Upper- Albian age [2] deposited during the first marine transgression into the basin. The aforementioned formation in turn was succeeded by Late Albian-Cenomanian to Turonian, Ekenkpon Shale. Subsidence on the faulted blocks of horst and graben allowed wide spread deposition of shales with minor marl and mudstone intercalation. The New Netim Marl of Coniacian [5] age succeeded the shale. The Santonian period was marked by a major unconformity in the study area. Nkporo Shale of Late Campanian to Early Maastrichtian [6] capped marine transgression and Mesozoic sedimentation in the Calabar Flank. The Tertiary continental sands and gravel of the Benin Formation complete the sedimentation in the Calabar Flank.

Location of the study area

The area of study is located at Ikot Okpara village, off Calabar-Itu road in Odukpani Local Government Area of Cross River State, Southeastern Nigeria (Figure 1). Three sampling locations (LOC.1-3) were investigated. Their geographic coordinates were NO50 10' and E08° 15′ 44.4″ for location 1 sample; N05^o 10^o 13.8" 43.2" 02.9" and E08⁰ 15' for location 2 and NO5° 09' and E08° 15′ 35.8″ 37.3" for location 3 respectively.

The relief of the area can generally be described as very gentle and sometimes undulating. The elevation is approximately 100m to 200m above mean sea level.

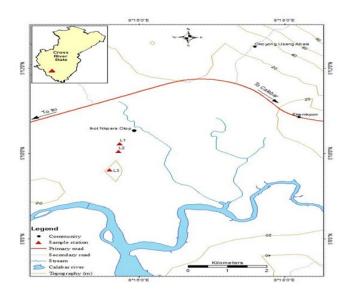


Figure 1. An outlined map of part of the study area

2.1. Vegetation and Relief of the Area

Vegetation is used in describing the environment with respect to the described trees, shrubs and grasses which grow on the earth surface. The vegetation in the study area, Ikot Okpara Otopy shows a varied combination of different types of plant groups of trees, shrubs and grasses. The vegetation cover is influenced by man's activities such as bush burning, farming, hunting, and timbering which reduces it to a mere secondary forest with moderate trees and shrubs (Figure 2).

Figure 2. Vegetation in the study area

The sedimentary terrain of study area falls within the Calabar Flank which is part of the coastal sedimentary basin of the southeastern Nigeria.

The term Calabar Flank was first proposed by Murat [1] for that part of the southern Nigeria sedimentary basin characterized by crustal block fault trending in a NW-SE direction and located at the easternmost part of the Gulf of Guinea. The basin according to Nyong [5] is bounded by the Oban Massif in the north, Calabar hinge line separates the basin from Niger Delta basin in the south, while Ikpe platform and Cameroon volcanic trend delineate it in the west and east respectively (Figure 3).

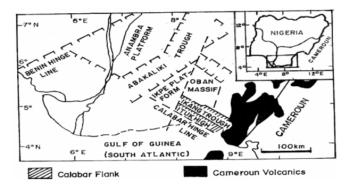


Figure 3. Geologic sketch map of south – eastern Nigeria showing Calabar Flank [7]

3. Materials and Methods

A detailed field map was created using the accessibility (topographic) map, GPS to locate the research sections on the map, and a compass clinometer to determine the trend of the geologic boundaries. The laboratory materials used include a transmitted light binocular microscope, SedLog version 3.0, an excel spread sheet, and other relevant publications for researching prior studies in the topic field. The limits were deduced from the gradual changes in lithology, flora, and terrain. The boundaries between formations, however, were inferred based on gradational changes in lithofacies. The foraminifera and palynomorph content of the shale samples was determined. Due to extensive weathering and poor matrix composition, available sandstone materials were unsuitable for foraminifera and palynological examination. Outcrop logging was done in a variety of $% \left\{ 1,2,\ldots,n\right\}$ areas where they were exposed due to road cuts, erosion, and stream channels. The observation and recording of the features began at the beginning of the exposures. The geological features documented are: lithotypes, bed thickness, grain size, color, mineral composition, nature of contact between beds, sedimentary structures (physical, biogenic, and chemical), bed attitude, and cross bed azimuth.

The degree of bioturbations at various beds was recorded, and drawings of their structures were prepared in the field notebook. To confirm the presence of carbonates, dilute HCl was administered to probable carbonate-containing strata. The conventional foraminiferal and palynological procedures were used to process all samples. The zeiss stereo microscope was used for foraminiferal and lithologic investigations, while the trinocular Acuscope biological microscope was used for palynological identification. Foraminifera and palynomorphs were counted in the samples. The foraminifers were prepared by washing and treating small quantities (approximately 20 g-30 g) of outcrop material with one teaspoonful of anhydrous sodium carbonate for full disintegration. Following that, the samples were sieved into coarse, medium, and fine fractions, which were then stored in well-labeled sample bags. The samples were finally subjected to mounting procedures.

4. Results and Discussion

4.1. Lithostratigraphy

The detailed lithologic examination and description of all the samples retrieved from the study area reveal that this section is made predominantly of shales. This shale is dark grey to light brown, subfissile to fissile, moderately hard, micaceous and calcareous. Abundant microfauna occur. Light to dark grey, very fine grained and smooth silt with minor sandstones were recorded in some locations. The general characteristic of the sediment as exposed in Ikot Okpara Otopy showed that the samples possessed some similar features belonging to late Cretaceous sediments of Nkporo Formation as they exhibit lithological similarities to the lithostratigraphy of Nkporo Shale of the Calabar Flank.

4.2. Biostratigraphic Interpretation

The biostratigraphic interpretation of the investigated area consists of foraminiferal and palynological analyses.

4.3. Foraminiferal Biostratigraphy

The foraminiferal taxa recovered from this area were relatively low to moderate throughout the section. A total of one hundred and eight (108) foraminiferal specimens were identified, with one barren interval recorded.

The result of the analyzed section reveals that the encountered sediments penetrated Maastrichtian -? Paleocene age. The occurrence of the following foraminiferal assemblage depicts this age; they are Bolivina afra, Bolivina explicata, Globigerina fringe, and Haplophragmoides talokaense. Foraminiferal distribution in the study area is shown below.

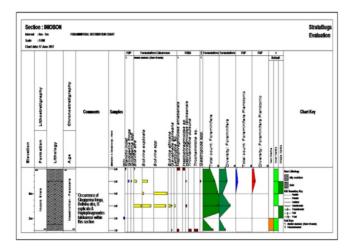


Figure 4. Foraminiferal distribution chart from Ikot Okpara Otopy

4.4. Palynological Biostratigraphy

The palynomorphs recovered from the study section yielded moderate to well preserved diverse assemblages of grains, especially miospores. The analysis yielded a total count of 196 palynomorphs. The age of the study sections is identified as Maastrichtian -? Palaeocene by the presence of Cingulatisporites ornatus, Auriculidites reticulates, **Ephedripites** ambonoides, Retidiporites magdalensis, Synolocolporites marginatus, Constructipollenites Foveotriletes margaritae, Buttina andreevi, Proxapertites operculatus, Ziviporites blanenesis and Paleocystodinium sp. These palynomorphs have been documented to penetrate the Maastrichtian -? Palaeocene [6, 8 – 11] which is similarly adopted here

The relative frequency distribution of the different palynomorphs is presented below while Plates 2 and 3 show some of the recovered and identified palynological taxa from the section under investigation.

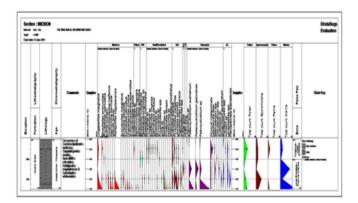


Figure 5. Palynological distribution chart from the study section

4.5. Paleoenvironmental Interpretation

The paleoenvironmental interpretation of this study section was done by the combination of lithology and biostratigraphic information. Based on the descriptive method adopted on the sediments, it was deduced that those sediments were probably deposited in a shallow marine environment.

The high occurrence of calcareous foraminiferal taxa over arenaceous forms show the paleoenvironment of deposition to depict a neritic /shelf setting and ranges from Non-marine through Inner neritic at the base of investigation to Middle neritic paleo-water depths. The absence foraminifer, as well as the low occurrence of arenaceous taxa towards the base of this section, without their calcareous counterparts infer a very shallow water depth. The co-occurrence of arenaceous taxa with calcareous forms indicate rise in water depth with deposition within the marginal/littoral (marshy) environment.

The continental palynomorphs predominate over the marine elements inferring proximity of the depositional sites. The occurrences of some palm's taxa with some marine palynomorphs (dinoflagellate cysts and prasinophytes) suggest coastal marine, preferably mangrove swamp paleoenvironment.

4.6. Paleoecological Interpretation

The presence of the genera Haplophragmoides infers brackish saline paleoecological setting. Cyathidites, Longapertites, Retidiporites and Monocolpollenites genera thrive well in humid climate condition [9, 12]. The abundance of these nypa related pollen in the study area therefore infer dispositional environment in a tropical/ humid mangrove swamps environment. The high occurrence of Longapertites, Retidiporites, Syncolporites, Monocolpollenites and Constructipollenites genera, which are palms and similar to the ones occurring in Anambra Basin of Southeastern Nigeria infer Late Cretaceous Palmae Province of Africa, South America and India [13 – 15]. The palm province supports a tropical to subtropical climate and the palynological elements are interpreted as indicative a warm and humid climate [9].

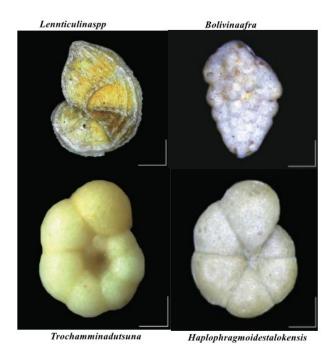


Plate 1. Key Foraminiferal

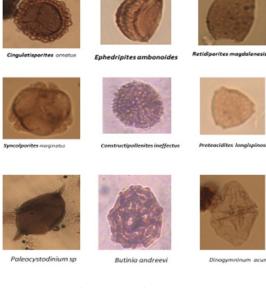


Plate 2. Key Palynomorphs

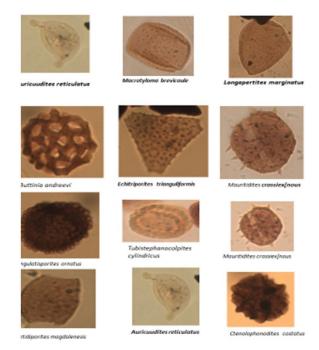


Plate 3. Key Palynological

5. Conclusion

The studied area belongs to the Late Cretaceous sediment of Calabar Flank known as the Nkporo shale. The lithological analysis shows that sediments were made predominantly of dark grey to light brown, fossiliferous shale with minor occurrences of silts and sandstone. The biostratigraphic analyses (foraminiferal and Palynological) depict the Maastrichtian, Paleocene age for the study area.

The paleoenvironmental and paleoecological analysis carried out from the study section revealed that the sediments were deposited in a shallow to open marine settings within Non-marine through Inner to Middle neritic paleo-water depths. The palynological interpretation on the paleoenvironmental and paleoecological studies from the investigated section suggests deposition in the environment not too far from the source of the depositions. The occurrence of both continental and marine palynmorphs infers transitional environment between marine and continental settings. The

occurrence of some palm taxa confirms the Late Cretaceous Palmae Province of Africa, South America and India. The palm province supports a tropical to subtropical climate and the assemblages are interpreted as indicative of a warm and humid climate.

Declaration of Conflict of Interests

The authors declare that there is no conflict of interest. They have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

References

- [1.] Boboye, O.A., Palynostratigraphic and palaeoecological studies of the Cretaceous strata in the Bornu Basin, Northeastern Nigeria. (RMZ) -Materials and Geoenvironment Journal, 60(1) (2013) 17 – 24.
- [2.] Petters, S.W., Central West African Cretaceous Tertiary Benthic Foraminifera and Stratigraphy. Palaeontographica Abt A. 179 (1982) 1–104.
- [3.] Nyong, E.E., Ramanathan, R.M., A record of oxygen deficient paleoenvironments in the Cretaceous of the Calabar Flank, Southeastern Nigeria. Journal of African Earth Sciences. 3(4) (1985) 455-460.
- [4.] Adeleye, D.R., Fayose, E.A., Stratigraphy of the Type section of Awi Formation, Odukpani area, Southeastern Nigeria. Nigerian Journal of Mining Geology, 15 (1978) 33-37.
- [5.] Nyong, E.E., Cretaceous Sediments in the Calabar Flank in Geological excursion guidebook. Proceedings of the 31st Annual Conference of the Nigerian Mining and Geosciences Society, (1995)13-25.
- [6.] Edet, J.J., Nyong, E.E. Depositional environments, sea-level history and Paleobiogeography of the flank, Southeast Nigeria, 102(1-2) (1993) 161 – 175.
- [7.] Petters, S.W., Zarboski, P.M.P., Essien, N.U., Nwokocha, K. D., Inyang, D. (2010). Cretaceous sediments in the Calabar Flank in Geological excursion guidebook. Proceedings of the 46th Annual Conference of the Nigerian Mining and Geosciences Society, Calabar, (2010) 1 – 10.
- [8.] Atta-Peters, D, Kyorku, N.A. (2013). Palynofacies Analysis and Sedimentary Environment of Early Cretaceous Sediments from Dixcove 4-2x well, Cape Three Points, offshore Tano Basin, western Ghana. International Research Journal of Geology and Mining, 3(7) (2013) 270 – 278.
- [9.] Herngreen, G.F.W., Zentraiblattfor Geological and paleotologic. 11(12) (1998)1313 – 1323.
- [10.] Salami, M.B., Upper Senoonian and Lower Tertiary pollen grains from the Southern Nigeria Sedimentary Basins. Revista Espanoola de Micropaleontologia 17 (1985) 5-26.
- [11.] Ola, P.S., Fabinu, A.K., Ojo, A.O., Palynomorphs assemblage of an onshore (Fb-1) well in Niger Delta oil Province. Journal of Emerging Trends in Engineering and Applied Science 4(6) (2013) 847-854.

- [12.] Schrank, E., Non-marine Cretaceous Palynology of Northern Kordofan, Sudan, with notes on fossil Salviniales (water ferns). Geologische Rundschau, 83, (1994) 773–786.
- [13.] Herngreen, G.F.W., Cretaceous microfloral Provinces. Berliner Geowissenschaftliche Abhandlungen, Reihe A, Geologie und Palontologie,19, (1980) 79-82.
- [14.] Ononduku, U.S., Okosun, E.A., Palynology, palynostratigraphy and Paleoenvironmental analysis of Maiganga Coal mine, Gombe Formation, Nigeria. Universal Journal of Geosciences, 2(3) (2014) 93-103.
- [15.] Itam,A.E., Inyang, D.O., Umana, U.S., Akpan, E.B., Udinmwen, E., Palynostratigraphy of Lemna Road Transect of Benin Formation, Calabar Flank, Nigeria Asian Journal of Physical and Chemical Sciences, 1-10 (2016).

How to Cite This Article

Harry, T.A., Uwemedimoh, I., Udofia, M., and Itam, A., Upper-Cretaceous and Paleocene Biostratigraphy of Nkporo Shales, Calabar Flank, Southern Benue Trough, Journal of Nature, Science & Technology,1(2022), 6572.

https://doi.org/10.36937/janset.2022.6572