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 Predicting the Water Quality Index (WQI), which provides communities 
and policymakers a measurable indicator of water quality, is crucial 
for efficient environmental management. The purpose of this study is 
to investigate numerical models for predicting the WQI values using 
Minitab (regression analysis) and machine learning algorithms namely 
Decision Tree (DTR), Random Forest (RGR), Stochastic Gradient Decent 
(SGD), and Support Vector Machine (SVR). This is accomplished by 
collecting surface and ground water from 200 locations in the Paba 
Upazila, Rajshahi and doing laboratory tests to determine the pH, 
turbidity, total dissolved solids and total solids to create an 
extensive dataset that reflects the water conditions in the area. The 
WQI is then computed using the parameters from the Brown et al. (1972) 
technique. According to the analysis, Minitab and SVR perform better 
than the others, obtaining strong classification metrics (93% 
accuracy, 0.94 F1-score) and remarkable prediction accuracy (r2 = 
0.9503 for Minitab; r2 = 0.9443 for SVR). The intricate interactions 
between the several water quality indices in the study area are well 
captured by these models. With a data-driven strategy to monitoring 
and forecasting water quality in Paba Upazila, the findings offer 
significant insights for local water resource management. The results 
of the evaluation can provide a scientific basis for the conservation 
of the local aquatic environment, and the model created in this study 
can be used as a guide for similar water quality assessment work. This 
study also highlights the potential of integrating machine learning 
algorithms with statistical software such as Minitab for environmental 
monitoring applications, and it helps design customized solutions for 
water quality evaluation in comparable regions of Bangladesh. 

 

1. Introduction 

Economic growth, environmental balance, and human health all depend on having access to clean and safe 
water. In recent decades, the quality of surface and groundwater resources has been seriously harmed by the 
fast rate of urbanization, industrial growth, and agricultural intensification. Effective water resources 
management now depends on precise water quality evaluation and ongoing monitoring. The Water Quality Index 
(WQI), which combines several physico-chemical factors into a single composite score to categorize the 
water's suitability for different purposes, is one of the most extensively used methods for assessing water 
quality. The Water Quality Index (WQI) developed by Brown et al. in 1970, is one of the most well-known and 
frequently used techniques for measuring overall water quality. By combining multiple important water quality 
metrics into a single numerical value, this index provides a thorough and understandable simplified depiction 
of the state of the water. The equation is as follows. 

WQI=
∑ (𝑊𝑊𝑖𝑖 .𝑄𝑄𝑖𝑖)𝑖𝑖=1
𝑛𝑛
∑ (𝑊𝑊𝑖𝑖)𝑖𝑖=1
𝑛𝑛

                            (1) 

Here, 

Qi= quality rating of the ith parameter (on a scale of 0 to 100) = 
𝑉𝑉𝑖𝑖  −𝑉𝑉0 

𝑆𝑆𝑖𝑖  −𝑉𝑉0 
𝑥𝑥100  
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Wi= relative weight (unit weight) of the ith parameter; 
n = total number of water quality parameters used; 
Vi= Measured value of the ith parameter; 
V0= Ideal value of that parameter; 

Si= Standard permissible value for the ith parameter (e.g., WHO or national standards). 

According to their relative significance to water quality, the Brown et al. WQI model assigns particular 
weights to various physico-chemical parameters, including pH, dissolved oxygen (DO), turbidity, total 
dissolved solids (TDS), and biochemical oxygen demand (BOD). To create a single index score, these weighted 
values are then combined using a defined procedure. 

Table 1. Standard Values for Drinking Water Parameters (Bangladesh & WHO) 

Parameter Symbol 
Standard Permissible Limit 

(mg/L or unit) 
Ideal 
Value 

pH pH 6.5 – 8.5 7 

Dissolved Oxygen DO ≥ 5.0 mg/L 
14.6 
mg/L 

Biochemical Oxygen Demand BOD ≤ 3.0 mg/L 0 

Total Dissolved Solids TDS ≤ 1000 mg/L 0 

Turbidity - ≤ 5 NTU 0 

Total Suspended Solids TSS 
≤ 10 mg/L (surface water 

standard) 
0 

Electrical Conductivity EC 
≤ 400 μS/cm (suggested for 

drinking) 0 

Color - ≤ 15 TCU 0 

Table 1 lists the standard acceptable values for clean drinking water parameters in Bangladesh that are in 
accordance with WHO criteria [1][2][3]. These values are frequently cited in national policies such 
Bangladesh Standards and Testing Institution (BSTI) standards. Based on widely accepted interpretations in 
Bangladesh and in accordance with international standards (such as WHO and DOE-BD guidelines), Table 2 shows 
the Water Quality Index (WQI) ranges and corresponding water quality classes [1][4][5]. 

Table 2. WQI Ranges and Water Quality Classification 

WQI Range 
Water Quality 

Status Remarks / Suitability 

0 – 25 Excellent 
Water is of very high quality, safe 

for drinking 

26 – 50 Good 
Suitable for drinking with minor 

treatment 

51 – 75 Moderate / Poor 
Needs conventional treatment before 

use 

76 – 100 Very Poor 
Not suitable for drinking; use for 

irrigation 

> 100 Unsuitable for use 
Highly polluted; not safe for any 

direct use 

Even with its wide range of applications, the conventional WQI calculation method can be laborious and might 
not adequately account for the intricate, nonlinear relationships between water quality variables. Because 
Conventional approaches to WQI computation frequently relies on manual weighting of parameters, which is 
subjective and labor-intensive (time-consuming, inherently subjective and limits adaptability to new regions 
etc.). In this study, author address this limitation by employing machine learning models to automate the 
WQI prediction process, thereby eliminating the need for manual weighting and improving both efficiency and 
objectivity. Data-driven methods, especially machine learning (ML), have become strong substitutes for these 
constraints in order to model intricate correlations between water quality measures and make more accurate 
and efficient predictions of WQI. ML algorithms are appropriate for dynamic environmental monitoring jobs 
because they can generalize predictions for unseen samples, learn from prior data, and reveal hidden patterns 
[6][7]. 

Machine learning techniques for forecasting the Water Quality Class (WQC) and WQI have been investigated in 
recent research. Numerous algorithms [8][9][10][11] have demonstrated encouraging outcomes in WQI prediction 
and WQC classification, such as Random Forest, Multi-Layer Perceptron, and Gradient Boosting. Using a mix 
of 19 water quality factors and nearby land use activities, Ejaz et al. (2024) [8] used sophisticated machine 
learning algorithms to forecast the water quality index of an industrially polluted creek in Pakistan. With 
just seven water quality factors, the Gradient Boost (GB) model performed the best in predicting the polluted 
Aik-Stream's WQI. The application of supervised machine learning algorithms to effectively forecast WQC and 
WQI using just four input parameters—temperature, turbidity, pH, and total dissolved solids—was investigated 
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by Ahmed et al. in 2019 [9].  The most effective algorithms for predicting the WQI are gradient boosting, 
which has a learning rate of 0.1, and polynomial regression, which has a degree of 2. Their respective mean 
absolute errors (MAEs) are 1.9642 and 2.7273. In contrast, the multi-layer perceptron (MLP) classifies the 
WQC most effectively with an accuracy of 0.8507 when configured in the (3, 7) configuration. The gradient 
boosting classification model and the multilayer perceptron regression model performed the best among the 
machine learning algorithms that Jha et al. (2024) [10] offered to forecast the water quality index and 
water quality features. The MLP regressor model outperformed other regression models in the Nair et al. 
(2022) [11] study, predicting the water quality index with the lowest root mean squared error (RMSE) of 
2.432. Using a variety of solo and hybrid machine learning methods, Bui et al. (2020) [12] sought to enhance 
the prediction of water quality indices. They discovered that the hybrid BA-RT approach performed better 
than the other models. Sanaa [13] evaluated machine learning algorithms on drinking water quality for better 
sustainability at 2022. The study evaluates the efficiency of using machine learning (ML) techniques in 
order to predict the quality of water. The results show that SVM and k-nearest neighbor are better according 
to F1-score and ROC AUC values. However, The LASSO LARS and SGD are better based on recall values. 

As mentioned earlier, physico-chemical parameters, including pH, dissolved oxygen (DO), turbidity, total 
dissolved solids (TDS), and biochemical oxygen demand (BOD), are given particular weights according to their 
relative significance to water quality in the Brown et al. WQI model. A single index score is then created 
by integrating these weighted values using a defined formula. The conventional WQI computing method can be 
laborious and cannot adequately reflect the intricate, nonlinear relationships between water quality factors, 
despite its wide range of applications. 

This study uses machine learning models and Minitab-based statistical analysis (regression analysis) to 
estimate the WQI as described by Brown et al. in order to address these challenges. Data on water quality, 
including pH, TDS, turbidity, total solids, and color, were taken from Paba Upazila, Rajshahi, Bangladesh. 
Comparing the predictive capabilities of different machine learning algorithms, validating the results with 
Minitab, and proving that it is feasible to combine contemporary data analytics with conventional frameworks 
for evaluating water quality are the goals. The findings of this study can help environmental authorities 
make informed judgments on the management of water resources in a timely manner. 

2. Methodology 

2.1. Study area and Data Collection 

Paba Upazila, a subdistrict in the Rajshahi District of northwest Bangladesh, is where the current study is 
carried out. Geographically, Paba occupies an area of roughly 280.42 km² and is located between latitudes 
24°19′N and 24°30′N and longitudes 88°29′E and 88°42′E. The area is a part of the Barind Tract, due to which 
the area is experiencing a significant decline in groundwater levels, which is distinguished by its primarily 
agricultural terrain, moderate to low rainfall, and reddish-brown clayey to silty soils.  Owing to its close 
proximity to Rajshahi City Corporation and reliance on surface and groundwater resources, Paba Upazila faces 
mounting strain on its water resources as a result of urbanization, irrigation needs, and population 
increase. Figure 1. represents the map of study area. In the area, water is used for a variety of things, 
including drinking, small-scale industrial, irrigation, and household consumption. However, concerns over 
the deterioration of water quality in recent years have been raised by inappropriate waste disposal, 
excessive fertilizer use, and a lack of infrastructure for water treatment. In order to guarantee sustainable 
management of water resources and the preservation of public health, it is crucial to evaluate and forecast 
the WQI in this region. 

 

Figure 1. Map of the study area (Paba Upazila, Rajshahi) 

A total of 200 water samples are collected from various locations throughout Paba Upazila, including surface 
water (ponds, canals) and groundwater sources (tube wells, deep wells). In order to provide spatial 
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representation in rural, residential, and peri-urban areas, the sampling locations are selected. Figure 2. 
represents some sampling operations on the study area. 

2.2. Working Procedure 

This study combines laboratory test, software analysis and machine learning models. Water samples were 
collected from Paba Upazila in plastic bottles of drinking products and freezed so that the properties of 
the materials remain same as the time of sample collection. During the sampling operation, location, source 
of water, time and date were labeled at the bottle. Then collected sample were tested in the laboratory to 
find PH, color, Turbidity, Total solids (TS), Total suspended solids (TSS) and Total dissolved solids (TDS). 
Table 3 represents the standard references obtained for every test and Table 4 represents sample of data of 
the study area. 

  

  

Figure 2. Sampling operations 

Table 3. Standard references for test 

Test References Remarks 

Location Google Map - 

Sampling 
Process 

ASTM D3370 Standard Practices for Sampling Water from Closed Conduits 

ASTM D5905 Standard Practice for Sampling Wastewater 

ASTM D1066 Practice for Sampling Industrial Wastewate 

Temparature ASTM D5469 Standard Test Method for Water Temperature Measurement 

pH ASTM D1293 Standard Test Methods for pH of Water 

TDS (mg/L) ASTM D5907 Standard Test Methods for Filterable Matter (TDS) and 
Nonfilterable Residue (TSS) in Water 

TS (mg/L) ASTM D5907 
Standard Test Methods for Filterable Matter (TDS) and 
Nonfilterable Residue (TSS) in Water 

Turbidity ASTM D1889 Standard Test Method for Turbidity of Water 
 

Subsequently, WQI is calculated by using the equation 1. The obtained dataset is then analyzed by Minitab 
software and ML models i.e. Decision Tree (DTR); Random Forest (RFR); Stochastic Gradient Decent (SGD); 
Support Vector Machine (SVM). For machine learning models, 80% data is taken for training and 20% data for 
testing so that maximum data can be found for training the model and validate it respectively. Data 
normalization is done by standardscaler and nill/null values are also being processed before implementation 
of model (all data were found to be applicable). Performance indicators i.e. r2; Mean squared error (MSE); 
Root mean square error (RMSE) etc. are then calculated. Comparing with the ideal values of the regression 
performance indicators the model acceptance decision is taken and best model is so selected. Figure 3. 
represents the working process for this study. Based on the predicted WQI value, WQC is so measured (comparing 
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the value with the range mentioned at Table 2.) and performance indicators for classification i.e. accuracy; 
precision; recall; F1_score etc. are calculated for all developed models. Then based on the two results best 
model is so selected and numerical model for each study is found. 

Table 4. Sample dataset 

Sample 
No 

Address Longitude Latitude Temperature pH 
TDS 

(mg/L) 
TS 

(mg/L) 
Turbidity WQI 

1 Notun Emadpur 88.68016 24.37383 29 6.4 89.458 115.25 11.13 127.7353 

2 
Mashkatadighi 

purbopara 
88.67079 24.368166 29 7.5 78.587 1.0122 7.8 102.7657 

3 
Mashkatadighi 
moddhopara 

88.66647 24.36829 30 8.2 74.25 102.63 2.18 53.8766 

4 
Dauanpara mor 

mashjid 
88.666621 24.364963 30 7.3 989.458 1.15023 5.21 78.2072 

5 
Mashkatadighi 

purbopara 
88.67322 24.3673 30 7.9 90.78 110.23 1.13 42.9962 

6 
Katakhali 
pourosova 

vaban 
88.685897 24.36408 30 6.5 187.587 450.6 10.89 127.9344 

7 
Belgharia 

zam-a mashjid 
88.40262 24.21078 29 6.1 184.36 201.36 4.13 63.4669 

8 
Coumahini 

bazar 
88.695611 24.344669 30 6.2 185.94 120.24 9.45 112.6841 

9 
Daunpara 

dokkhin para 
88.666317 24.361805 30 6.4 54.412 65.21 1.13 36.6607 

10 
Shyampur 

guaal para 
88.665978 24.351282 30 6 144.52 163.56 8.53 103.4924 

 

 

Figure 3. Workflow 

2.3. Minitab Software and ML models 

Minitab is a robust statistical program that is frequently used for predictive modeling, quality enhancement, 
and data analysis. Minitab 22 was used in this work to visualize the water quality metrics gathered from 
Paba Upazila, perform statistical validation, and analyze preliminary data. To assess the link between 
important physico-chemical characteristics, the program was utilized to build regression models and 
correlation matrices. In this study, author take advantages of regression analysis by MiniTab software, 
where WQI is so predicted using this statistical software and using the Table 2. The WQC is so classified. 

Again Promising solutions are provided by machine learning (ML) models including DT, RF, SGD, and SVM, which 
use previous water quality data to precisely predict WQI. Table 5. represents hyperparameters found by grid 
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search cross validation techniques. Complex patterns and connections between physicochemical parameters, 
including as pH, dissolved oxygen, turbidity, and heavy metal concentrations, can be found using these 
models. SGD provides scalability for huge datasets, SVM is excellent at handling high-dimensional data, and 
DT and RF deliver predictions that are robust and interpretable. In order to improve water quality monitoring 
and management, this study compares the performance of several ML models in order to determine which one is 
best for WQI prediction. 

Table 5. Hyperparametes for Machine Learning Models 

Model Name Parameters (GridSearch Cv) 

DTR min_samples_leaf=2, min_samples_split=5, random_state=42) 

RFR n_estimators=50, random_state=42 

SGD alpha=0.1, penalty='elasticnet', random_state=42 
SVR C=10, epsilon=0.5, kernel='linear' 

 

3. Results and Discussions  

The assessment of machine learning models for forecasting the Water Quality Index showed clear differences 
in the evaluated algorithms' performance. Figure 4. represents the regression plot for actual data and 
predicted data by minitab software and ML models. Minitab demonstrated the highest predictive performance 
(r2 = 0.9503) with the lowest error metrics (MSE = 46.8926, RMSE = 6.8478) in capturing the intricate 
correlations between water quality measures and WQI, as indicated in Table 6. With r2 values of 0.9493 and 
0.9443, respectively, the SGD and SVR models likewise showed strong performance, albeit with somewhat greater 
error rates. While DTR followed behind with an r2 of 0.9341 and the largest errors of any model, RFR 
demonstrated competitive performance (r2= 0.9428). The numerical modeling for predicted models is tabulated 
at Table 7. 

According to these results, ensemble-based models generally outperform single decision trees in WQI 
prediction. While Minitab provides reliable statistical tools for model validation and analysis, its 
performance is largely attributed to the quality of data preparation, model selection, and proper use of 
cross-validation. Advanced machine learning platforms may be more suitable for capturing complex non-linear 
patterns and further reducing overfitting. 

Table 6. Performance metrics for regression analysis 

Model Name r2 value MSE RMSE 

DTR 0.9341 82.4509 9.0802 

MiniTab 0.9503 46.8926 6.8478 

SVR 0.9443 60.5476 7.7812 

SGD 0.9493 69.1387 8.3149 

RFR 0.9428 71.3483 8.4467 

 

Table 7. Numerical model developed by each model 

Model   Numerical Model 

MiniTab 
WQI 

(MiniTab) 
= 

-17.9 + 6.36 pH +  0.00550 TDS (mg/L) +  0.0247 TS (mg/L) 
+  8.885 Turbidity 

DTR WQI (DTR) = 30.0 +  0.68 pH +  0.00939 TDS (mg/L) +  0.0275 TS (mg/L) 
+  8.083 Turbidity 

RFR WQI (RFR) = 
12.8 +  2.98 pH +  0.01432 TDS (mg/L) +  0.0263 TS (mg/L) 
+  7.820 Turbidity 

SGD WQI (SGD) = 
-6.862 +  5.668 pH +  0.007673 TDS (mg/L) 
+  0.03263 TS (mg/L) +  8.071 Turbidity 

SVR WQI (SVR) = 
0.9498 +  4.337 pH +  0.001053 TDS (mg/L) 
+  0.003744 TS (mg/L) +  9.329 Turbidity 

 

Again the predicted values are classified according to Table 2. Then based on WQC actual and predicted data, 
the performance metrics are demonstrated at Table 8. The confusion matrix is presented at Figure 5. Based 
on Table 5, the most reliable models are MiniTab and Support Vector Regression (SVR), both of which achieve 
93% accuracy and continuously high precision (0.95), recall (0.93-0.94), and F1-score (0.93-0.94) scores. 
Their greater capacity to correctly classify water quality groups and forecast WQI values is demonstrated 
by these data. While Decision Tree Regression (DTR) and Stochastic Gradient Descent (SGD) perform 
comparatively poorly, with 77% and 73% accuracy, respectively, Random Forest Regression (RFR) performs 
pretty well with 80% accuracy. 
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Figure 4. Regression Plot 

 

 

 

 

 

 

 

y = 0.8869x + 11.901
R² = 0.9341

0
20
40
60
80

100
120
140
160

0 50 100 150

Pr
ed

ic
te

d

Actual

DTR

y = 0.9503x + 3.3817
R² = 0.9503

0

20

40

60

80

100

120

140

0 50 100 150

Pr
ed

ic
te

d

Actual

MiniTab

y = 0.9705x + 4.6938
R² = 0.9443

0

20

40

60

80

100

120

140

0 50 100 150

Pr
ed

ic
te

d

Actual

SVR
y = 0.879x + 12.247

R² = 0.9493

0

20

40

60

80

100

120

140

160

0 50 100 150

Pr
ed

ic
te

d

Actual

SGD

y = 0.8593x + 12.755
R² = 0.9428

0
20
40
60
80

100
120
140

0 50 100 150

Pr
ed

ic
te

d

Actual

RFR



Sayed et al.  Civil Engineering Beyond Limits 2 (2025) 1999 
 

   

 8 

 
 

  

  

 

Figure 5. Confusion Matrix for each Model 
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These categorization metrics' performance hierarchy supports and validates the previous regression study 
results, which also indicated MiniTab to have the best predictive capacity. MiniTab's persistent superiority 
across a variety of evaluation techniques indicates that it is especially well-suited for tasks involving 
the assessment of water quality. This is probably because it can efficiently describe intricate, non-linear 
relationships in water quality data while retaining the capacity for generalization. The efficacy of kernel-
based approaches in this application space is further supported by SVR's high performance. These results 
have significant ramifications for the management of water resources, as prompt decision-making and 
environmental preservation depend on precise and trustworthy WQI prediction. MiniTab and SVR are especially 
interesting options for integration into operational water quality monitoring systems because to their 
proven performance advantages. 

Table 8. Performance Metrics based on WQC 

Performance 
Parameters 

Minitab DTR RFR SGD SVR 

Accuracy 0.93 0.77 0.8 0.73 0.93 

Precision 0.95 0.85 0.86 0.84 0.95 

recall 0.93 0.77 0.8 0.73 0.94 

f1-score 0.94 0.78 0.81 0.76 0.93 

 

4. Conclusions 

The performance of many machine learning models, including DTR, RFR, SGD, SVR, and MiniTab, for forecasting 
the WQI using regression and classification metrics was thoroughly assessed in this work. MiniTab and SVR 
consistently outperformed other models, as seen by their superior regression performance (r2 = 0.9503, lowest 
MSE and RMSE), as well as their highest classification accuracy (93%), precision (0.95), recall (0.93–0.94), 
and F1-scores (0.93–0.94). Their ability to handle intricate, non-linear correlations in water quality data 
makes them especially dependable for predicting WQI. Because of its sensitivity to data noise and difficulties 
in capturing complex feature interactions, DTR and SGD performed less well than RFR, which showed intermediate 
performance. Strong correlations between regression and classification results support the findings' validity 
and imply that ensemble-based and kernel-based approaches are more appropriate for estimating water quality 
than simpler algorithms. 

These results offer water resource managers a data-driven method for effectively evaluating water quality, 
which has important practical ramifications for environmental monitoring. The dataset used in this study 
are limited in size or geographical coverage, restricting the generalizability of the findings. Future 
research could investigate deep learning (Long Short-Term Memory (LSTM) networks and Convolutional Neural 
Networks (CNNs)) or hybrid models (e.g., CNN-LSTM or Transformer-based models) to improve forecast accuracy 
even more. Real-time implementation in intelligent water quality monitoring systems could also be 
investigated. Minitab and SVR demonstrated the strongest performance in WQI prediction, according to this 
study, which also provides a trustworthy instrument for managing water resources sustainably. 
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