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 In geotechnical engineering and construction, the optimal moisture 
content (OMC) and maximum dry density (MDD) is crucial for determining 
the ideal conditions for soil strength and stability in 
infrastructure. Traditional laboratory techniques for calculating OMC 
and MDD are both costly and time-consuming. Machine learning offers a 
potential alternative for traditional empirical approaches by making 
it easier to create complex prediction models and algorithms that can 
improve the accuracy and efficacy of forecasts of compaction 
parameters. Machine learning-specifically Meta-heuristic optimization 
(MHO)-approaches are high-level problem-solving strategies that seek 
optimal or near-optimal solutions to difficult optimization problems, 
which are frequently non-linear, multi-modal, or non-differentiable. 
The Genetic Algorithm (GA), Generalized Population-Based Adaptive 
Search (GPAS), and Particle Swarm Optimization (PSO) are three 
powerful meta-heuristic optimization algorithms that are commonly 
employed to solve complex optimization issues. The goal of this 
project is to develop a framework that uses meta-heuristic 
optimization techniques to estimate OMC and MDD. Using MHO models, 
the study shows a substantial correlation between OMC and MDD, 
respectively, with significant soil factors such as specific gravity, 
Atterberg limits, and grain size distribution parameters. This study 
depicts three distinct models for the prediction of OMC and MDD named 
GA, PSO, and GPAS models. Among the models, the GA model demonstrated 
the highest accuracy in predicting OMC (R2 = 0.9999, MSE = 0.0001), 
while the PSO model was most effective for MDD prediction (R2 = 0.9660, 
MSE = 0.1871). These findings highlight the accuracy and dependability 
of the GA technique, which presents a viable method for precisely 
forecasting the MDD and OMC of soil stabilization mixtures in a range 
of engineering applications. Additionally, it reduces the negative 
effects that soil extraction and modification have on the environment. 

 

1. Introduction 

Every construction that rests on the ground needs to be stable and safe. It is necessary to identify the 
properties of the soil in order to meet these safety and stability standards. MDD and OMC are important 
factors in soil compaction and geotechnical engineering because they influence soil structure durability, 
strength, and longevity [1]. Determining MDD and OMC by laboratory methods is a laborious and time-consuming 
process. As a result, several scientists, researchers, and investigators created and implemented various 
techniques and approaches to calculate the soil's compaction characteristics [2-3]. Several scholars 
developed empirical correlations as a faster and easier way to determine the compaction properties of soils 
[3-5]. However, the empirical equations contain a substantial error obtained from both linear and multilinear 
regression [6-7]. Several researchers have recently implemented machine learning and deep learning to 
precisely analyze the compaction parameters due to the growing advancements in artificial intelligence 
technology. ML is used in predicting compaction characteristics and evaluating different geo-hazards [8-9]. 
Hasnat et al. (2019) [10] used Support Vector Machines (SVM) to create a model for predicting soil compaction 
characteristics. For the optimal moisture content and maximum dry density, the best R-squared values obtained 
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from the projected equation are 0.86 and 0.91, respectively. Jalal et al. (2021) [11] created new empirical 
GP-based prediction models to assess the compaction characteristics of expansive soils. The study discovered 
that the produced models performed better when the suggested models were contrasted with earlier empirical 
models. Sinha et al. (2008) [12] established a prediction model for soil permeability and compaction 
characteristics using artificial neural networks (ANNs). Abidhan et al. (2023) [13] used a hybrid 
intelligence model that included an artificial neural network (ANN) and a grey wolf optimizer (GWO) to 
monitor soil compaction in civil engineering projects. The study contrasted the outcomes of the created 
models with those of four other hybrid ANNs that were constructed using the salp swarm algorithm, Harris 
Hawks optimization, slime mold algorithm, and particle swarm optimization. The ANN-GWO provides the most 
accurate estimation for OMC (RMSE = 0.0986, R2 = 0.7273) and MDD (RMSE = 0.1017, R2 = 0.7147) of soils, 
according to the testing dataset's results. Using 212 data, Ardakani et al. (2017) [14] predicted soil 
compaction parameters using a GMDH-type neural network and a genetic algorithm. They showed that the GMDH-
type NN is very good at predicting MDD (Testing: R=0.93 and RMSE=0.63) and OMC (Testing: R=0.96 and 
RMSE=1.79). Another study, which developed ANN models using 180 laboratory test compaction data, found that 
the OMC and MDD models of ANN performed 0.91 and 0.92, respectively [15]. 

Machine learning (ML) is an essential part of artificial intelligence. However, other research employed 
machine learning (namely SVM, RF, LSTM, and ANN) with several optimization techniques to predict MDD and 
OMC as mentioned. This study aims to address the limitations of past research by investigating the application 
of three meta-heuristic optimization techniques (GA, GPAS, and PSO) to develop accurate and efficient models 
for predicting MDD and OMC. The performance of these models will be compared, and their potential to improve 
geotechnical engineering practice will be evaluated. These approaches may reduce the risk of getting trapped 
in local optima, as they may optimize the solution space globally. In addition, metaheuristics are reliable 
for practical engineering applications since they offer adaptability and flexibility in a variety of soil 
conditions and they can also enhance the performance of machine learning models by modifying the 
hyperparameters or enhancing the model architecture. Ultimately, using metaheuristic optimization to forecast 
OMC and MDD not only enhances model performance but also helps geotechnical engineers make better informed, 
economical, and efficient decisions. To create the prediction models, soil test data from laboratory 
experiments were employed, as indicated in the section below. 

2. Materials and Methods 

The whole dataset consists of laboratory test results for a variety of soil index parameters that were 
gathered from a private organization. The following information is included in the dataset: Specific Gravity 
(Sp. Gr.), MDD, OMC, Sand (%), Silt (%), Clay (%), Liquid Limit (LL), Plastic Limit (PL), Plasticity Index 
(PI), and Fineness Content (%). Table 1 represents the statistical parameters of the input dataset where 
mean, standard deviation (std), minimum (min) and maximum (max) value of each input are presented.  

Table 1. Statistical Parameters for Input data 

Parameters Count Mean Standard deviation Minimum value Maximum value 
LL 300 26.5093 5.09056 20.15 38 
PL 300 16.7968 4.62768 10.57 25 
PI 300 9.7125 1.57121 6.12 14 

sand % 300 12.487 9.89261 2 60.04 
Silt % 300 72.6988 8.78998 34.35 87.4 
Clay % 300 14.827 6.09376 5.61 26 
FC (%) 300 23.7755 7.43475 12.52 63.62 

Specific gravity 300 2.69263 0.08873 2.5 2.79 
MDD 300 15.2656 1.38923 9.2214 17.9523 
OMC 300 23.7755 7.43475 12.52 63.62 

 
Figures 1 and 2 show the results of the Pearson correlation analysis, which offers a thorough grasp of the 
connections between the soil characteristics used in this investigation.  

 
Figure 1. Pearson correlation matrix for MDD 

 LL PL PI Sand % Silt % Clay % FC (%) Sp. Gravity  MDD 

LL 1         

PL 0.95215 1        

PI 0.43553 0.13957 1       

Sand % -0.2893 -0.3930 0.2202 1      

Silt % -0.3205 -0.2251 -0.3754 -0.7929 1     

Clay % 0.9318 0.9624 0.1843 -0.4763 -0.1578 1    

FC (%) 0.1500 0.0391 0.3708 0.1945 -0.2503 0.0450 1   

Sp. Gravity 0.4497 0.5465 -0.1525 -0.3949 0.0919 0.5091 -0.2851 1  

Dry Density -0.2620 -0.1544 -0.3941 -0.2807 0.4108 -0.1371 -0.9186 0.1579 1 
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Moreover, it measures the correlation between changes in one variable and changes in another. With a value 
of +1 denoting a perfect positive linear correlation, a value of -1 denoting a perfect negative linear 
correlation, and 0 denoting no linear correlation between the variables, the coefficient falls between -1 
and +1.    

 
Figure 2. Pearson correlation matrix for OMC 

LL and PL have a very high correlation (r = 0.952), which confirms their intrinsic relationship as crucial 
consistency metrics. Both are highly influenced by clay content (r = 0.932 and 0.962, respectively). Expected 
trends are revealed by particle size distribution analysis, which shows that the sand content has a strong 
inverse relationship with silt content (r = -0.793) and negative correlations with plasticity parameters 
(LL, PL) and clay percentage. This indicates that the granular fractions in the soil composition are 
complementary. Particularly noteworthy are the moisture-related correlations, where Field Capacity (FC%) 
shows an almost perfect positive linear relationship with Natural Moisture Content (r = 0.997), indicating 
that FC% essentially determines the in-situ water retention capacity. The strong negative correlation between 
FC% and dry density (r = -0.919) provides crucial engineering insight, demonstrating that soils with higher 
water-holding capacity tend to have lower dry densities, which has significant implications for compaction 
characteristics and bearing capacity assessments. Specific gravity displays moderate positive correlations 
with plasticity parameters (LL, PL) and clay content, likely attributable to the higher density of clay 
minerals compared to coarser particles. These intricate association patterns not only improve our basic 
comprehension of the relationships between soil properties, but they also offer a solid scientific foundation 
for creating geotechnical engineering prediction models, especially to estimate compaction behavior. 

To achieve the research objective, gathered data was utilized to forecast MDD and OMC based on selected 
algorithms. To reduce the complexity of running the models, data pretreatment like data cleaning and 
dimensionality reduction was performed. Data cleaning process is so performed to find any nill or null or 
not applicable values on the dataset. For this study, there were no nill/null or not applicable values. This 
treatment is done to find better models, faster computation, more reliable insights. After loading and 
preprocessing the dataset, StandardScaler (handles outliers better than minmaxscaler) is used to scale the 
features, and the dataset is divided into training (80%) and testing (20%) sets to provide the model enough 
data to learn and enough data to test. Figure 3 depicts the methodology for this study. 

The GA creates a population of individuals, each representing a distinct collection of hyperparameters, 
including the MLP Regressor's maximum iterations, regularization parameter (alpha), learning rate, activation 
function, and hidden layer size and number. In order to accommodate the minimization framework, the r2 score 
is negated since PSO minimizes the objective function. For every hyperparameter, the search is limited 
within predetermined parameters (maximum iterations, regularization parameter, learning rate, activation 
function, and hidden layer size and number etc.), and PSO iterates over a swarm of particles to find the 
best combination. In order to balance exploration (global search) with exploitation (local refinement), GPAS 
generalizes and modifies important techniques that are inspired by population-based metaheuristics such as 
GA, PSO, and Differential Evolution (DE). In the case of GPAS, it focuses on minimizing the mean squared 
error (MSE) through cross-validation. The GPAS class initializes particles of population, each of which 
represents a possible solution (hyperparameter set) with arbitrary positions and velocities inside a certain 
search space. The objective function, which trains an MLPRegressor with the given hyper parameters (hidden 
layer size and learning rate) and calculates the mean squared error (MSE) through 5-fold cross-validation, 
is used to assess each particle's fitness. The algorithm keeps track of each particle's individual best 
scores and placements in addition to the global best solution for all particles. Selection, crossover, and 
mutation are examples of leveraging evolutionary operations that were used to iteratively improve model 
performance through the optimization of hyperparameters. Table 2 represents the hyperparameters used for 
each model. After finding the best parameters, the target values are so detected using the developed model 
by these best hyperparameters. 

 LL PL PI sand % Silt % Clay % FC (%) Sp. Gravity OMC 

LL 1         

PL 0.9521 1        

PI 0.4355 0.1395 1       

sand % -0.2893 -0.393 0.2202 1      

Silt % -0.3205 -0.2251 -0.3754 -0.792 1     

Clay % 0.9318 0.9624 0.1843 -0.476 -0.1578 1    

FC (%) 0.1500 0.0391 0.3708 0.1945 -0.2503 0.0450 1   

Sp. Gravity 0.4497 0.5465 -0.1525 -0.3949 0.0919 0.5090 -0.285 1  

OMC 0.1500 0.0391 0.3708 0.1945 -0.250 0.0450 0.9970 -0.2851 1 
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Figure 3. Research methodology  

Table 2. Hyperparameters used for each model 

Model Parameters MDD OMC 

GA 

Activation identity identity 
Hidden Layer Sizes 66 87 
Learning Rate 0.08564 0.07055 
Max  Iterations 95 700 

PSO 

Hidden Layer Sizes 10 79 
Learning Rate 0.03104 0.06318 
Alpha 0.44237 Not Applicable 
Packages pyswarm pyswarm 
Max  Iterations 1000 500 

GPAS 
Hidden Layer Sizes 500 5 
Learning Rate 0.00138 0.09219 
Max  Iterations 500 500 

 

3. Results and Discussion  

OMC and MDD are two crucial factors in soil compaction engineering, can be predicted with machine learning 
algorithms. Complex correlations between compaction parameters and soil qualities (such as particle size 
distribution and plasticity index) can be efficiently analyzed using meta-heuristic techniques. In this 
study, the GA, PSO, and GPAS algorithms were successfully used to optimize the parameters of machine learning 
models in order to enhance their performance. Model performance was evaluated using statistical indicators 
such as R² i.e. The percentage that the independent variables account for in explaining the variance in the 
dependent variable, Pearson correlation coefficient (r) i.e. shows the linear relationship's direction and 
strength among the variables, mean absolute error (MAE) i.e. the mean absolute variation between expected 
and actual values, providing a clear indication of the error magnitude, mean squared error (MSE) i.e. 
calculates the average squared errors, and root mean squared error (RMSE) i.e. provides a measure of 
prediction accuracy. These metrics evaluate predictive performance, accuracy, and model fit collectively. 
The particular application and data variability determine the acceptable conditions for model evaluation 
metrics like R2, R, MSE, RMSE, and MAE. A robust model fit is often indicated by an R2 value above 0.8, and 
a high linear correlation between predicted and observed values is suggested by r value above 0.9 [16]. 
Better performance is indicated by lower values for error-based metrics; RMSE and MAE should ideally be 
within 10–30% of the range of the target variable [17]. Whereas MAE offers a more impartial assessment of 
overall correctness, RMSE is more susceptible to significant errors. MSE should be kept to a minimum, even 
when squared units make it harder to read [18]. 
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As the statistical parameters satisfy the optimal suggestion for the successiveness of machine learning 
models, the results for predicted MDD, shown in Table 3, demonstrate that each model can predict MDD. The 
best performance is obtained at testing (R2=0.9751; r=0.9881; MAE=0.2387; MSE=0.0977; RMSE=0.3127), training 
(R2=0.9569; r=0.926; MAE=0.3459; MSE=0.0977; RMSE=0.3127), and overall data (R2=0.9660; r=0.9503; MAE=0.3362; 
MSE=0.1871; RMSE=0.4325) for the PSO model to predict MDD. 

Table 3. Performance metrics for the prediction of MDD 

Model  R2 r MAE MSE RMSE 

GA 
Test 0.958 0.9794 0.3378 0.1648 0.406 
Train 0.8107 0.9052 0.3765 0.2564 0.5064 
All 0.8751 0.9378 0.3688 0.2381 0.4879 

PSO 
Test 0.9751 0.9881 0.2387 0.0977 0.3127 
Train 0.9569 0.9260 0.3459 0.1939 0.4404 
All 0.9660 0.9503 0.3362 0.1871 0.4325 

GPAS 
Test 0.7928 0.9142 0.635 0.8148 0.9026 
Train 0.9172 0.9581 0.2459 0.1121 0.3349 
All 0.8674 0.9357 0.3237 0.2527 0.5027 

 

The statistical evaluation parameters depicted in Table 4 show that each model is capable of predicting the 
OMC optimally with the r² value of about 0.99. Comparing all statistical parameters, it is found that the 
GA model is best to predict OMC for test (R² = 0.9999; r = 0.9999; MAE = 0.0104; MSE = 0.0001; RMSE = 
0.0132), train (R² = 0.9999; r = 0.9999; MAE = 0.008; MSE = 0.0001; RMSE = 0.0109), and overall (R² = 0.9999; 
r = 0.9999; MAE = 0.0085; MSE = 0.0001; RMSE = 0.0111) data. 

Table 4. Performance metrics for the prediction of OMC 

Model  R2 r MAE MSE RMSE 

GA 
Test 0.9999 0.9999 0.0104 0.0001 0.0132 
Train 0.9999 0.9999 0.008 0.0001 0.0109 
All 0.9999 0.9999 0.0085 0.0001 0.0111 

PSO 
Test 0.9945 0.9999 0.4894 0.6979 0.8354 
Train 0.9939 0.9988 0.3554 0.2057 0.3554 
All 0.9944 0.9993 0.3822 0.3042 0.5515 

GPAS 
Test 0.9993 0.9997 0.0939 0.0824 0.2871 
Train 0.9999 0.9999 0.0189 0.0005 0.0229 
All 0.9996 0.9998 0.0339 0.0169 0.1301 

 

Figures 4 and 5 illustrate the plot generated by the actual and predicted values of MDD and OMC, respectively, 
for the developed models. 

 

Figure 4. Comparison of Actual vs. Predicted Maximum Dry Density (MDD) Values for GA, PSO, 
and GPAS Models 

The best-developed model, which numerically predicts values about to close to the actual value, is 
displayed in the comparison plot. Nonetheless, all of the models properly forecast MDD; the GA forecasts 
value better than PSO and GPAS since the marker for the actual value and the GA-predicted value coincide. 
The ability of the three established models to predict OMC is shown in Figure 5. 
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Figure 5. Comparison of Actual vs. Predicted Maximum Dry Density (MDD) Values for GA, PSO, 
and GPAS Models 

Additionally, the models are validated using the performance matrices in Table 5. The values of all the 
matrices are extremely near to the performance's ideal value. The comparison plot for OMC prediction depicts 
the markers in the same position without a single dissimilarity, which validates the developed models. 

4. Conclusions 

Machine learning offers various benefits over traditional geotechnical field and laboratory testing methods. 
Machine learning algorithms may find intricate patterns and connections between soil properties by examining 
large datasets, which improves forecast accuracy. This article is the first that utilized metaheuristic 
optimization tools (GA, PSO, and GPAS) to predict MDD and OMC. Based on the values of statistical parameters 
mentioned earlier, it is evident that the developed models show tremendous results to predict the target 
variable. When comparison is done among the statistical parameters for each model, it is found that PSO 
(testing data, r2=0.9751, r=0.9881, MSE=0.0977; training data, r2=0.9569, r=0.9260, MSE=0.1939; overall data, 
r2=0.9660, r=0.9503, MSE=0.1871) shows the best results to predict MDD, and GA (test data, r2=0.9999, 
r=0.9999, MSE=0.0001; train data, r2=0.9999, r=0.9999, MSE=0.0001; and overall data, r2=0.9999, r=0.9999, 
MSE=0.0001) holds the position of the best model for this study to predict OMC. The findings indicate that, 
compared to experimental results, the accuracy of all suggested models is satisfactory. According to the 
models' performance measure values, the MHO models for MDD and OMC prediction have outperformed other models 
that have been published in the literature. The results show that the constructed models are reliable and 
can be utilized with confidence, and they are corroborated by the results of experimental experiments 
reported by other researchers. According to this inquiry, PSO and GA are very promising methods that can be 
used to evaluate the fundamental connections between the various interconnected input and output data for 
a variety of civil engineering projects where compaction parameters are an important parts. Moreover, these 
models have several advantages over conventional empirical techniques, such as increased accuracy, less 
experimental work, and the capacity to handle high-dimensional and non-linear data. By applying machine 
learning, engineers can enhance soil stability, optimize compaction processes, and general geotechnical 
construction performance. Although, this study demonstrates a successful machine learning techniques to 
predict compaction parameters within a short period and of course the method is cost effective over 
traditional laboratory methods of compaction parameters, further study can increase the validation of such 
kind of ML methods with more datasets and robust machine learning algorithms. 
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