Quantification of the Effects of Coating Parameters on the Properties of TiAlZrN Coatings

Quantification of the Effects of Coating Parameters on the Properties of TiAlZrN Coatings

Brilliant Engineering (BEN)
Volume 1 - Issue 4 - October 2020

Yaşar Sert Tevfik Küçükömeroğlu İhsan Efeoğlu

Abstract

In this study, TiAlZrN layer was coated on AISI H13 substrate surface with variable substrate bias voltage, Zr target current, and ambient pressure deposition parameters by using closed field unbalanced magnetron sputtering (CFUBMS) technique. The main goal of this paper is to determine the effect percentages of these variable parameters on the properties of TiAlZrN coatings by Analysis of Variance (ANOVA). These coating properties include average grain size, thickness, hardness, adhesion strength and wear resistance. The numerical data obtained as a result of this study will shed light on the select of parameters which have a direct effect on coatings to the researchers who will work on this topic. The parameters used as variables in the deposition process were leveled with Taguchi experimental (33) design method. Average grain size and thickness of coatings were established by SEM images. The average grain sizes of coatings were between 290 and 440 nm and the most effective parameter was substrate bias voltage with 58.4 %. The hardness, adhesion strength and wear properties of the coatings were determined using micro hardness tester, scratch test and ball on disc wear device respectively. The maximum hardness of coatings was 1674 HV, while the wear resistance was increased by 37 times compared to the substrate material. The maximum adhesion strength value of the coatings was reached 56N. The superiority of the effect of substrate bias voltage on the hardness, adhesion strength and wear resistance of the coatings compared to other deposition parameters was again prominent (respectively 86.15%, 53.63% and 70.86%). Also, the hardness and wear resistance properties were found to be directly related to each other. The sample with the highest coating hardness also showed the highest wear resistance performance. In the sample with the lowest hardness, this situation found to be similar.

Keywords

TiAlZrN; CFUBMS; Taguchi; ANOVA; Adhesion strength; Wear
https://doi.org/10.36937/ben.2020.004.001