Mohammad Rashedul Haque
Mohammad Belal Hossain
Mohammad Roknuzzaman
Noor-A-Afrin Emu
Fatema Tuz Jahan
Abstract
Disposal of plastic bottles made from Poly-Ethylene Terephthalate (PET) is a worldwide problem. Green concrete, made with one or more recycled items, is also a trendy concept in the sustainable construction sector. The current study is to investigate the possibility of using recycled PET waste bottles as a partial replacement of natural coarse aggregate in green concrete to get marginal effective compressive strength and workability. Two different sizes of PET fiber such as 10mm*10mm and 19mm*19mm are used. Four different replacement percentages such as 0% (control), 1%, 5%, and 10% of coarse aggregate are adopted with a fixed water-cement ratio of 0.42. A total of 42 cylindrical specimens are prepared and conventional water curing is done for 7 days and 28 days. Compressive strength for control specimen (0%) after 7 days and 28 days curing is found as 39.96 MPa and 53.42 MPa respectively. On the other hand, the compressive strength of specimens with 10mm*10mm plastic fiber is found to be 22.40 MPa, 16.14 MPa & 11.83 MPa after 7 days curing and 38.48 MPa, 25.81 MPa & 20.08 MPa after 28 days of curing for 1%, 5%, and 10% replacement of coarse aggregate respectively. For 19mm*19mm plastic fibers, these values are 21.22 MPa, 7.99 MPa & 4.29 MPa after 7 days of curing and 35.82 MPa, 11.36 MPa & 7.03 MPa after 28 days of curing for the same percentages. The findings of the study may serve as a guideline for deciding the replacement percentage and fiber size for preparing PET-based green concrete.
Keywords
PET; Green Concrete; Compressive strength; Workability; Plastic Fiber